22 research outputs found

    Can residuals of the Solar system foreground explain low multipole anomalies of the CMB ?

    Full text link
    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented by Maris et al. (2011), we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed discussed by Kim & Naselsky (2010). We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2 sigma interval, is in agreement with the corresponding amplitudes, discussed by Lew (2008).Comment: 24 pages, 9 figures, 5 tables. Matches version in JCA

    Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation

    Full text link
    We discuss the hypotheses that cosmological baryon asymmetry and entropy were produced in the early Universe by phase transition of the scalar fields in the framework of spontaneous baryogenesis scenario. We show that annihilation of the matter-antimatter clouds during the cosmological hydrogen recombination could distort of the CMB anisotropies and polarization by delay of the recombination. After recombination the annihilation of the antibaryonic clouds (ABC) and baryonic matter can produce peak-like reionization at the high redshifts before formation of quasars and early galaxy formation. We discuss the constraints on the parameters of spontaneous baryogenesis scenario by the recent WMAP CMB anisotropy and polarization data and on possible manifestation of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change

    Topological Defects in Gravitational Lensing Shear Fields

    Full text link
    Shear fields due to weak gravitational lensing have characteristic coherent patterns. We describe the topological defects in shear fields in terms of the curvature of the surface described by the lensing potential. A simple interpretation of the characteristic defects is given in terms of the the umbilical points of the potential surface produced by ellipsoidal halos. We show simulated lensing shear maps and point out the typical defect configurations. Finally, we show how statistical properties such as the abundance of defects can be expressed in terms of the correlation function of the lensing potential.Comment: 17 pages, 4 figure

    The Cold Spot as a Large Void: Lensing Effect on CMB Two and Three Point Correlation Functions

    Full text link
    The "Cold Spot" in the CMB sky could be due to the presence of an anomalous huge spherical underdense region - a "Void" - of a few hundreds Mpc/h radius. Such a structure would have an impact on the CMB two-point (power spectrum) and three-point (bispectrum) correlation functions not only at low-l, but also at high-l through Lensing, which is a unique signature of a Void. Modeling such an underdensity with an LTB metric, we show that for the power spectrum the effect should be visible already in the WMAP data only if the Void radius is at least L \gtrsim 1 Gpc/h, while it will be visible by the Planck satellite if L \gtrsim 500 Mpc/h. We also speculate that this could be linked to the high-l detection of an hemispherical power asymmetry in the sky. Moreover, there should be non-zero correlations in the non-diagonal two-point function. For the bispectrum, the effect becomes important for squeezed triangles with two very high l's: this signal can be detected by Planck if the Void radius is at least L \gtrsim 300 Mpc/h, while higher resolution experiments should be able to probe the entire parameter space. We have also estimated the contamination of the primordial non-Gaussianity f_NL due to this signal, which turns out to be negligible.Comment: v1: 18 pages, 12 figures; v2: 19 pages, 12 figures, calculation of bispectrum improved, reference added, published version; v3: 19 pages, 12 figures, refined eq.(9) and related figures, conclusions strengthene

    Amplitude-phase analysis for CMB image reconstruction

    No full text
    corecore