58 research outputs found
Lubrication effects on the flow of wet granular materials
We investigate the dynamics of a partially saturated grain-liquid mixture
with a rotating drum apparatus. The drum is partially filled with the mixture
and then rotated about its horizontal axis. We focus on the continous
avalanching regime and measure the impact of volume fraction and viscosity of
the liquid on the dynamic surface angle. The inclination angle of the surface
is observed to increase sharply to a peak and then decrease as a function of
liquid volume fraction. The height of the peak is observed to increase with
rotation rate. For higher liquid volume fractions, the inclination angle of the
surface can decrease with viscosity before increasing. The viscosity where the
minima occurs decreases with the rotation rate of the drum. Limited
measurements of the flow depth were made, and these were observed to show only
fractional changes with volume fraction and rotation speeds. We show that the
qualitative features of our observations can be understood by analyzing the
effect of lubrication forces on the timescale over which particles come in
contact.Comment: 7 pages, 8 figure
Bistability versus Bimodal Distributions in Gene Regulatory Processes from Population Balance
In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the “off” state, and the other at the high end representing the “on” state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the “off” state and the other in the “on” state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model
Twardowski, the end of the road for DVT claims but not for the DVT problem?
The insidious condition of deep vein thrombosis contracted from long haul international flights has led to class actions in the UK and the USA. The culmination of these actions is represented by the case of Twardowski v American Airlines in the United States. In the wake of the 'no accident' finding in this case, itself part of a 19-case consolidated appeal, the door has closed on recovery for DVT claims. To wage a standard DVT case may now amount to professional negligence. Does there then remain an obligation on civil society to address the issue
Identifying traction-separation behavior of self-adhesive polymeric films from in situ digital images under T-peeling
In this paper procedures are developed to identify traction-separation curves from digital images of the deformed flexible films during peeling. T-peel tests were performed for self-adhesive polymeric films. High quality photographs of the deformed shape within and outside the zone of adhesive interaction were made in situ by the digital light microscope. The deformed line is approximated by a power series with coefficients computed by minimizing a least squares functional. Two approaches to identify the traction-separation curve for the given deformation line are proposed. The first one is based on the energy integral of the non-linear theory of rods and allows the direct evaluation of the adhesion force potential. The second one utilizes the complementary energy type variational equation and the Ritz method to compute the adhesion force. The accuracy of both approaches is analyzed with respect to different approximations for the deformed line and the force of interaction. The obtained traction vs. axial coordinate and the traction-separation curves provide several properties of the adhesive system including the maximum adhesion force, the length of the adhesive zone and the equilibrium position, where the adhesive force is zero while the separation is positive
- …