20,961 research outputs found

    Spin g-factor due to electronic interactions in graphene

    Full text link
    The gyromagnetic factor is an important physical quantity relating the magnetic-dipole moment of a particle to its spin. The electron spin g-factor in vacuo is one of the best model-based theoretical predictions ever made, showing agreement with the measured value up to ten parts per trillion. However, for electrons in a material the g-factor is modified with respect to its value in vacuo because of environment interactions. Here, we show how interaction effects lead to the spin g-factor correction in graphene by considering the full electromagnetic interaction in the framework of pseudo-QED. We compare our theoretical prediction with experiments performed on graphene deposited on SiO2 and SiC, and we find a very good agreement between them.Comment: Improved version of the manuscript; valley g-factor part has been remove

    Fleet Prognosis with Physics-informed Recurrent Neural Networks

    Full text link
    Services and warranties of large fleets of engineering assets is a very profitable business. The success of companies in that area is often related to predictive maintenance driven by advanced analytics. Therefore, accurate modeling, as a way to understand how the complex interactions between operating conditions and component capability define useful life, is key for services profitability. Unfortunately, building prognosis models for large fleets is a daunting task as factors such as duty cycle variation, harsh environments, inadequate maintenance, and problems with mass production can lead to large discrepancies between designed and observed useful lives. This paper introduces a novel physics-informed neural network approach to prognosis by extending recurrent neural networks to cumulative damage models. We propose a new recurrent neural network cell designed to merge physics-informed and data-driven layers. With that, engineers and scientists have the chance to use physics-informed layers to model parts that are well understood (e.g., fatigue crack growth) and use data-driven layers to model parts that are poorly characterized (e.g., internal loads). A simple numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consist of predicting fatigue crack length for a synthetic fleet of airplanes subject to different mission mixes. The model is trained using full observation inputs (far-field loads) and very limited observation of outputs (crack length at inspection for only a portion of the fleet). The results demonstrate that our proposed hybrid physics-informed recurrent neural network is able to accurately model fatigue crack growth even when the observed distribution of crack length does not match with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer perceptron, the stress intensity and Paris law layers, the cumulative damage cell, as well as python driver scripts) used in this manuscript are publicly available on GitHub at https://github.com/PML-UCF/pinn. The data and code are released under the MIT Licens

    Bias Correction and Modified Profile Likelihood under the Wishart Complex Distribution

    Full text link
    This paper proposes improved methods for the maximum likelihood (ML) estimation of the equivalent number of looks LL. This parameter has a meaningful interpretation in the context of polarimetric synthetic aperture radar (PolSAR) images. Due to the presence of coherent illumination in their processing, PolSAR systems generate images which present a granular noise called speckle. As a potential solution for reducing such interference, the parameter LL controls the signal-noise ratio. Thus, the proposal of efficient estimation methodologies for LL has been sought. To that end, we consider firstly that a PolSAR image is well described by the scaled complex Wishart distribution. In recent years, Anfinsen et al. derived and analyzed estimation methods based on the ML and on trace statistical moments for obtaining the parameter LL of the unscaled version of such probability law. This paper generalizes that approach. We present the second-order bias expression proposed by Cox and Snell for the ML estimator of this parameter. Moreover, the formula of the profile likelihood modified by Barndorff-Nielsen in terms of LL is discussed. Such derivations yield two new ML estimators for the parameter LL, which are compared to the estimators proposed by Anfinsen et al. The performance of these estimators is assessed by means of Monte Carlo experiments, adopting three statistical measures as comparison criterion: the mean square error, the bias, and the coefficient of variation. Equivalently to the simulation study, an application to actual PolSAR data concludes that the proposed estimators outperform all the others in homogeneous scenarios

    Two novel evolutionary formulations of the graph coloring problem

    Full text link
    We introduce two novel evolutionary formulations of the problem of coloring the nodes of a graph. The first formulation is based on the relationship that exists between a graph's chromatic number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The second formulation, unlike the first one, does not tackle one graph at a time, but rather aims at evolving a `program' to color all graphs belonging to a class whose members all have the same number of nodes and other common attributes. The heuristics that result from these formulations have been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and have been found to be competitive when compared to the several other heuristics that have also been tested on those graphs.Comment: To appear in Journal of Combinatorial Optimizatio

    Towards an Intelligent Workflow Designer based on the Reuse of Workflow Patterns

    Get PDF
    In order to perform process-aware information systems we need sophisticated methods and concepts for designing and modeling processes. Recently, research on workflow patterns has emerged in order to increase the reuse of recurring workflow structures. However, current workflow modeling tools do not provide functionalities that enable users to define, query, and reuse workflow patterns properly. In this paper we gather a suite for both process modeling and normalization based on workflow patterns reuse. This suite must be used in the extension of some workflow design tool. The suite comprises components for the design of processes from both legacy systems and process modeling
    corecore