22 research outputs found

    Inhibitory Effect of Flavonoids on the Efflux of N-Acetyl 5-Aminosalicylic Acid Intracellularly Formed in Caco-2 Cells

    Get PDF
    N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 μM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 μM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 μM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3′ or C4′ position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells

    Effect of quercetin on the permeability of N-acetyl 5-aminosalicylic acid on Caco-2 cells.

    Get PDF
    The aim of this study was to investigate the transporter-mediated transport of N-acetyl 5-aminosalicylic acid (Ac-5-ASA) and the effect of quercetin on Ac-5-ASA transport.Caco-2 cell monolayers grown in Transwells were used to study the transport of Ac-5-ASA in the absence or presence of quercetin, and apical-to-basolateral and basolateral-to-apical apparent permeability (PappAB and PappBA values, respectively) was determined. The effect of transporter inhibitors, such as MK571, quinidine and mitoxantrone, on the transport of Ac-5-ASA was investigated.In the absence of transporter mediators, the transport of Ac-5-ASA was much higher in the basolateral-to-apical direction than in the opposite direction. The PappBA/PappAB ratio of Ac-5-ASA was 4.89. Quercetin inhibited the apical efflux of Ac-5-ASA and decreased the PappBA/PappAB ratio to 1.05. Of the transporter inhibitors, MK571 decreased the PappBA/PappAB ratio to 1.07; however, neither quinidine nor mitoxantrone had an effect on Ac-5-ASA transport.Ac-5-ASA was excreted by multidrug resistance-associated protein 2 from Caco-2 cells, and its transport was inhibited by quercetin. Our findings suggest that dose levels of sulfasalazine or 5-aminosalicylic acid can be decreased by coadministration of quercetin, leading to improved pharmaceutical care for inflammatory bowel diseases.The aim of this study was to investigate the transporter-mediated transport of N-acetyl 5-aminosalicylic acid (Ac-5-ASA) and the effect of quercetin on Ac-5-ASA transport.Caco-2 cell monolayers grown in Transwells were used to study the transport of Ac-5-ASA in the absence or presence of quercetin, and apical-to-basolateral and basolateral-to-apical apparent permeability (PappAB and PappBA values, respectively) was determined. The effect of transporter inhibitors, such as MK571, quinidine and mitoxantrone, on the transport of Ac-5-ASA was investigated.In the absence of transporter mediators, the transport of Ac-5-ASA was much higher in the basolateral-to-apical direction than in the opposite direction. The PappBA/PappAB ratio of Ac-5-ASA was 4.89. Quercetin inhibited the apical efflux of Ac-5-ASA and decreased the PappBA/PappAB ratio to 1.05. Of the transporter inhibitors, MK571 decreased the PappBA/PappAB ratio to 1.07; however, neither quinidine nor mitoxantrone had an effect on Ac-5-ASA transport.Ac-5-ASA was excreted by multidrug resistance-associated protein 2 from Caco-2 cells, and its transport was inhibited by quercetin. Our findings suggest that dose levels of sulfasalazine or 5-aminosalicylic acid can be decreased by coadministration of quercetin, leading to improved pharmaceutical care for inflammatory bowel diseases

    Inhibitory Effect of Flavonoids on the Efflux of N-Acetyl 5-Aminosalicylic Acid Intracellularly Formed in Caco-2 Cells

    Get PDF
    Recommended by Mostafa Z. Badr N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 μM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 μM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 μM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetylconjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3 or C4 position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells

    Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate.

    Get PDF
    The cellular accumulation of individual catechins was measured as an index of intestinal absorption to clarify the interactions among catechins. The cellular accumulation of (-)-epicatechin (EC) increased in the presence of other catechins. The ability of gallate catechin such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase the cellular accumulation of EC was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased the cellular accumulation of EC by 426% as compared with that in untreated cells. Conversely, the cellular accumulation of ECG was not influenced by other catechins, but it increased by 54% in the presence of GAO. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a catechol group and a neighboring carbonyl group, whereas the pyrogallol moiety, without a neighboring carbonyl group, required 3 hydroxyl groups to increase the cellular accumulation of EC. Furthermore, gallate esters required long carbon chains to increase the same. The experiment using EGCG, GAO, or their derivatives indicated that the ability of gallate or pyrogallol moiety to increase the cellular accumulation of EC was restricted by their hydrophobicity. These results suggest that the co-administration of foods containing functional materials such as gallate or pyrogallol moieties, increases the intestinal absorption of catechin.The cellular accumulation of (-)-epicatechin increased by the gallate or pyrogallol moiety in catechin structure. The interaction among catechins appeared to affect intestinal absorption of catechin. The bioavailability of catechin may be improved by co-administration of functional foods.The cellular accumulation of individual catechins was measured as an index of intestinal absorption to clarify the interactions among catechins. The cellular accumulation of (-)-epicatechin (EC) increased in the presence of other catechins. The ability of gallate catechin such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase the cellular accumulation of EC was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased the cellular accumulation of EC by 426% as compared with that in untreated cells. Conversely, the cellular accumulation of ECG was not influenced by other catechins, but it increased by 54% in the presence of GAO. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a catechol group and a neighboring carbonyl group, whereas the pyrogallol moiety, without a neighboring carbonyl group, required 3 hydroxyl groups to increase the cellular accumulation of EC. Furthermore, gallate esters required long carbon chains to increase the same. The experiment using EGCG, GAO, or their derivatives indicated that the ability of gallate or pyrogallol moiety to increase the cellular accumulation of EC was restricted by their hydrophobicity. These results suggest that the co-administration of foods containing functional materials such as gallate or pyrogallol moieties, increases the intestinal absorption of catechin.The cellular accumulation of (-)-epicatechin increased by the gallate or pyrogallol moiety in catechin structure. The interaction among catechins appeared to affect intestinal absorption of catechin. The bioavailability of catechin may be improved by co-administration of functional foods

    薬物性肝障害モデルにおける弱塩基性薬物の体内動態変動の機序 : 血漿α[1]-Acid Glycoproteinの影響を中心として

    Get PDF
    目次 序論 / p1 本論 / p3 第1章 四塩化炭素肝障害モデルにおけるquinidineの体内動態 / p3  第1節 単回静注投与後の血漿中挙動 / p3  第2節 定常状態における組織分布 / p5  第3節 全身クリアランス減少と肝機能低下の関連 / p10  第4節 小括 / p12 第2章 四塩化炭素肝障害モデルにおけるquinidineの組織分布変動の機序 / p14  第1節 組織分布の理論的解析 / p14  第2節 組織結合 / p15  第3節 血漿pHの測定 / p16  第4節 血漿蛋白質結合 / p17  第5節 小括 / p18 第3章 四塩化炭素肝障害モデルにおける弱塩基性薬物の血漿蛋白質結合率増大の要因 / p19  第1節 In vitro血漿蛋白質結合 / p19  第2節 血漿蛋白質結合に及ぼすTris(butoxyethyl)-phosphateの影響 / p20  第3節 血漿蛋白質濃度の測定 / p22  第4節 血漿蛋白質結合率と血漿α₁-acid glycoprotein濃度の相関 / p23  第5節 小括 / p24 第4章 種々の薬物性肝障害モデルにおける弱塩基性薬物の血漿蛋白質結合 / p25  第1節 血漿蛋白質濃度の測定 / p25  第2節 肝障害度と血漿α₁-acid glycoprotein濃度の関係 / p28  第3節 血漿蛋白質結合率と血漿α₁-acid glycoprotein濃度との相関 / p30  第4節 小括 / p32 第5章 高α₁-acid glycoprotein血漿モデル(テレビン油投与ラット)におけるquinidineの体内動態 / p33  第1節 生理学的パラメーター / p33  第2節 単回静注投与後の血漿中挙動 / p35  第3節 肝抽出率の測定 / p38  第4節 組織分布と血漿蛋白質結合率との相関 / p40  第5節 小括 / p42 第6章 結論 / p44 謝辞 / p46 論文目録 / p47 実験の部 / p48 引用文献 / p61広島大学(Hiroshima University)博士(薬学)Pharmacologydoctora

    Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends

    No full text
    [Image: see text] Nanofibrous nonwoven fabrics have attracted attention as porous adsorbents with high specific surface areas for the safe and efficient treatment of spilled organic dyes and petroleum. For this purpose, a method of fabricating porous nanofibers with high specific surface areas would be highly beneficial. In this study, the phase separation in nanofibers electrospun from blended solutions of immiscible polymers [poly(styrene) (PS) and poly(vinylpyrrolidone) (PVP)] was investigated. The removal of PVP as a sacrificial polymer afforded the imprinting of mesopores (40–70 nm) in the PS nanofibers. The effects of solution composition (PS/PVP in N,N-dimethylformamide) on the structure formation in the fibers were investigated. The nanofibers thus obtained could selectively adsorb low-molecular-weight hydrophobic dyes, such as Nile Red and Oil Red O. Thus, it is expected that the combined approach of electrospinning of immiscible polymer blends and phase separation-induced patterning can be applied to the fabrication of functional nanofibers for diverse applications

    2-Methoxyestradiol as an Antiproliferative Agent for Long-Term Estrogen-Deprived Breast Cancer Cells

    No full text
    To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and 2-methoxyestradiol (2-MeO-E2), which are microtubule-destabilizing agents and agonists of the G protein-coupled estrogen receptor 1 (GPER1). The expression of GPER1 in LTED cells was low (~0.44-fold), and LTED cells displayed approximately 1.5-fold faster proliferation than MCF-7 cells. Although G-1 induced comparable antiproliferative effects on both MCF-7 and LTED cells (IC50 values of >10 µM), 2-MeO-E2 exerted antiproliferative effects selective for LTED cells with an IC50 value of 0.93 μM (vs. 6.79 μM for MCF-7 cells) and induced G2/M cell cycle arrest. Moreover, we detected higher amounts of β-tubulin proteins in LTED cells than in MCF-7 cells. Among the β-tubulin (TUBB) isotype genes, the highest expression of TUBB2B (~3.2-fold) was detected in LTED cells compared to that in MCF-7 cells. Additionally, siTUBB2B restores 2-MeO-E2-mediated inhibition of LTED cell proliferation. Other microtubule-targeting agents, i.e., paclitaxel, nocodazole, and colchicine, were not selective for LTED cells. Therefore, 2-MeO-E2 can be an antiproliferative agent to suppress LTED cell proliferation
    corecore