6 research outputs found

    Potential Use of Propolis in Phytocosmetic as Phytotherapeutic Constituent

    No full text
    Phytocosmetic is an important aspect of traditional medicine in several cultures. Researchers are now focusing to find new and effective ingredients of natural origin. Propolis is a natural beehive product extensively used in traditional medicine. We aimed in the present study to investigate the potential use of propolis as an aesthetic and phytotherapeutic constituent in phytocosmetics. Propolis was extracted using 80% ethanol. Total phenolic and flavonoid contents were determined calorimetrically. Free radical scavenging ability and reducing capacity were evaluated using four assays and expressed as IC50 values. Antibacterial activity was evaluated by the determination of minimum inhibitory concentration (MIC) on 11 Gram-positive and Gram-negative bacteria. The wound healing activity of 30% ethanolic extract and propolis ointment was studied using excision wounds in the anterio-dorsal side of the rats. The phenolic acid composition of the tested propolis was investigated using UFLC/MS-MS analysis. The tested propolis was rich in phenolic and flavonoid content and demonstrated an interesting antibacterial and antioxidant activity. Wounds treated with propolis appear to display a lesser degree of inflammation. Chemical analysis led to the identification of 11 phenolics. Among them, five are considered as main compounds: Chlorogenic acid (48.79 ± 5.01 ng/mL), Gallic acid (44.25 ± 6.40 ng/mL), Rutin (21.12 ± 3.57 ng/mL), Caffeic acid (28.19 ± 4.95 ng/mL), and trans-cinnamic acid (20.10 ± 6.51 ng/mL). Our results indicated that propolis can not only be used as a cosmetic ingredient but also be used as a preventative and curative constituent, which might be used as a barrier when applied externally on infected and non-infected skin

    Flavonoids from Algerian propolis

    Get PDF
    The investigation of propolis collected from Jijel, located in the northern-east part from Algeria afforded five flavones: pectolinarigenin (1), pilosin (2), ladanein (3), Chrysin (4) and apigenin (5). The structures were elucidated by spectroscopic analysis, including mass spectrometry, 1D and 2D NMR

    Functional roles and novel tools for improving‐oxidative stability of polyunsaturated fatty acids: A comprehensive review

    No full text
    Abstract Polyunsaturated fatty acids may be derived from a variety of sources and could be incorporated into a balanced diet. They protect against a wide range of illnesses, including cancer osteoarthritis and autoimmune problems. The PUFAs, ω‐6, and ω‐3 fatty acids, which are found in both the marine and terrestrial environments, are given special attention. The primary goal is to evaluate the significant research papers in relation to the human health risks and benefits of ω‐6 and ω‐3 fatty acid dietary resources. This review article highlights the types of fatty acids, factors affecting the stability of polyunsaturated fatty acids, methods used for the mitigation of oxidative stability, health benefits of polyunsaturated fatty acids, and future perspectives in detail
    corecore