2 research outputs found
Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog
One of the well-known challenges of fog forecasting is the high spatio-temporal variability of fog. An ensemble forecast aims to capture this variability by representing the uncertainty in the initial/lateral boundary conditions (ICs/BCs) and model physics. The present study highlights a new operational Ensemble Forecast System (EFS) developed by the Indian Institute of Tropical Meteorology (IITM), Pune, to predict the fog over the Indo-Gangetic Plain (IGP) region using the visibility (Vis) diagnostic algorithm. The EFS framework comprises the WRF model with a 4 km horizontal resolution, initialized by 21 ICs/BCs. The advantages of probabilistic fog forecasting have been demonstrated by comparing control (CNTL) and ensemble-based fog forecasts. The forecast is verified using fog observations from the Indira Gandhi International (IGI) airport during the winter months of 2020–2021 and 2021–2022. The results show that with a probability threshold of 50%, the ensemble forecasts perform better than the CNTL forecasts. The skill scores of EFS are relatively promising, with a Hit Rate of 0.95 and a Critical Success Index of 0.55; additionally, the False Alarm Rate and Missing Rate are low, with values of 0.43 and 0.04, respectively. The EFS could correctly predict more fog events (37 out of 39) compared with the CNTL forecast (31 out of 39) and shows the potential skill. Furthermore, EFS has a substantially reduced error in predicting fog onset and dissipation (mean onset and dissipation error of 1 h each) compared to the CNTL forecasts
Operational Probabilistic Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog
One of the well-known challenges of fog forecasting is the high spatio-temporal variability of fog. An ensemble forecast aims to capture this variability by representing the uncertainty in the initial/lateral boundary conditions (ICs/BCs) and model physics. The present study highlights a new operational Ensemble Forecast System (EFS) developed by the Indian Institute of Tropical Meteorology (IITM), Pune, to predict the fog over the Indo-Gangetic Plain (IGP) region using the visibility (Vis) diagnostic algorithm. The EFS framework comprises the WRF model with a 4 km horizontal resolution, initialized by 21 ICs/BCs. The advantages of probabilistic fog forecasting have been demonstrated by comparing control (CNTL) and ensemble-based fog forecasts. The forecast is verified using fog observations from the Indira Gandhi International (IGI) airport during the winter months of 2020–2021 and 2021–2022. The results show that with a probability threshold of 50%, the ensemble forecasts perform better than the CNTL forecasts. The skill scores of EFS are relatively promising, with a Hit Rate of 0.95 and a Critical Success Index of 0.55; additionally, the False Alarm Rate and Missing Rate are low, with values of 0.43 and 0.04, respectively. The EFS could correctly predict more fog events (37 out of 39) compared with the CNTL forecast (31 out of 39) and shows the potential skill. Furthermore, EFS has a substantially reduced error in predicting fog onset and dissipation (mean onset and dissipation error of 1 h each) compared to the CNTL forecasts