65 research outputs found

    Serotonin signaling contribution to an evolutionary success: the jaw joint of vertebrates

    Get PDF
    Serotonin (5-HT) is an ancient molecule that appeared very early during evolution, and it is present in different phyla. The 5-HT signaling system includes several G-coupled receptors and it is widely conserved in vertebrates. 5-HT is implicated in an astonishing number of biological processes and it has a key role as a morphogen in several complex networks during development before it can act as a neurotransmitter. Recent advances on how serotonin signaling can influence early development and its role in vertebrate morphogenesis come from mice and Xenopus. The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates (agnathans) represents a major event in the evolution of vertebrates. The acquisition of a jaw is assumed to have occurred after the split between gnathostomes and jawless vertebrates. A crucial question concerns what changes were introduced in the developmental patterning programme to obtain a jaw joint that is one of the most innovative inventions in the history of vertebrates. Molecular and developmental studies performed in Xenopus revealed for the first time that serotonin, through the 5-HT2B receptor signaling, is both sufficient and necessary to modulate the shape and functionality of the jaw, including the jaw joint. Accordingly, serotonin can be added to the complex interactive network of extrinsic factors that regulates mandibular arch development, thus contributing to one of the major vertebrate successes in evolution

    Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype

    Get PDF
    Mutations in the hematopoietic transcription factor GATA-1 alter the proliferation/differentiation of hemopoietic progenitors. Mutations in exon 2 interfere with the synthesis of the full-length isoform of GATA-1 and lead to the production of a shortened isoform, GATA-1s. These mutations have been found in patients with Diamond-Blackfan anemia (DBA), a congenital erythroid aplasia typically caused by mutations in genes encoding ribosomal proteins. We sequenced GATA-1 in 23 patients that were negative for mutations in the most frequently mutated DBA genes. One patient showed a c.2T > C mutation in the initiation codon leading to the loss of the full-length GATA-1 isoform

    Proceedings of the 61st Congress of the Italian Embryological Group (GEI) and the 36th Congress of the Italian Society of Histochemistry

    No full text
    Proceedings of the 61st Congress of the Italian Embryological Group (GEI) and the 36th Congress of the Italian Society of Histochemistry - June 7-10, 2015, Pisa, Ital

    RHAMM mRNA expression in proliferating and migrating cells of the developing central nervous system

    No full text
    Extracellular matrix components can influence cell behaviour by modulating a wide variety of events. In particular, the glycosaminoglycan hyaluronan is involved in many processes of the normal and pathological adult cells and it is essential for embryonic development. Two main HA receptors have been characterized in vertebrate developing embryos: CD44 and RHAMM. These receptors display completely different characteristics apart from their ability to bind hyaluronan. RHAMM is still the most mysterious hyaluronan receptor as it can act as cell surface receptor but it can also be localized in the cytoplasm or in the cell nucleus, displaying both hyaluronan dependent and independent functions. In particular, the role of RHAMM during embryogenesis is still largely unclear. We reported a detailed gene expression analysis of RHAMM during Xenopus laevis development comparing its mRNA distribution with that of the hyaluronan synthases and CD44 genes, in order to provide a first insight into the possible role of RHAMM during vertebrate embryogenesis. Our findings point out that RHAMM mRNA displays a specific distribution in proliferating regions of the developing neural tube and retina where synthesis of hyaluronan is not detected. On the contrary, RHAMM expression correlates with the expression of hyaluronan synthase-1 and hyaluronan-receptor CD44 gene expression in migrating cranial neural crest. These results suggest that during the central nervous system development RHAMM could be involved in cell proliferation and migration processes both in a hyaluronan independent and dependent manner
    • …
    corecore