389 research outputs found
Tunneling behavior of Ising and Potts models in the low-temperature regime
We consider the ferromagnetic -state Potts model with zero external field
in a finite volume and assume that the stochastic evolution of this system is
described by a Glauber-type dynamics parametrized by the inverse temperature
. Our analysis concerns the low-temperature regime ,
in which this multi-spin system has stable equilibria, corresponding to the
configurations where all spins are equal. Focusing on grid graphs with various
boundary conditions, we study the tunneling phenomena of the -state Potts
model. More specifically, we describe the asymptotic behavior of the first
hitting times between stable equilibria as in probability,
in expectation, and in distribution and obtain tight bounds on the mixing time
as side-result. In the special case , our results characterize the
tunneling behavior of the Ising model on grid graphs.Comment: 13 figure
Competitive nucleation in metastable systems
Metastability is observed when a physical system is close to a first order
phase transition. In this paper the metastable behavior of a two state
reversible probabilistic cellular automaton with self-interaction is discussed.
Depending on the self-interaction, competing metastable states arise and a
behavior very similar to that of the three state Blume-Capel spin model is
found
Basic Ideas to Approach Metastability in Probabilistic Cellular Automata
Cellular Automata are discrete--time dynamical systems on a spatially
extended discrete space which provide paradigmatic examples of nonlinear
phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular
Automata, are discrete time Markov chains on lattice with finite single--cell
states whose distinguishing feature is the \textit{parallel} character of the
updating rule. We review some of the results obtained about the metastable
behavior of Probabilistic Cellular Automata and we try to point out
difficulties and peculiarities with respect to standard Statistical Mechanics
Lattice models.Comment: arXiv admin note: text overlap with arXiv:1307.823
A comparison between different cycle decompositions for Metropolis dynamics
In the last decades the problem of metastability has been attacked on
rigorous grounds via many different approaches and techniques which are briefly
reviewed in this paper. It is then useful to understand connections between
different point of views. In view of this we consider irreducible, aperiodic
and reversible Markov chains with exponentially small transition probabilities
in the framework of Metropolis dynamics. We compare two different cycle
decompositions and prove their equivalence
- …