389 research outputs found

    Tunneling behavior of Ising and Potts models in the low-temperature regime

    Get PDF
    We consider the ferromagnetic qq-state Potts model with zero external field in a finite volume and assume that the stochastic evolution of this system is described by a Glauber-type dynamics parametrized by the inverse temperature β\beta. Our analysis concerns the low-temperature regime β→∞\beta \to \infty, in which this multi-spin system has qq stable equilibria, corresponding to the configurations where all spins are equal. Focusing on grid graphs with various boundary conditions, we study the tunneling phenomena of the qq-state Potts model. More specifically, we describe the asymptotic behavior of the first hitting times between stable equilibria as β→∞\beta \to \infty in probability, in expectation, and in distribution and obtain tight bounds on the mixing time as side-result. In the special case q=2q=2, our results characterize the tunneling behavior of the Ising model on grid graphs.Comment: 13 figure

    Competitive nucleation in metastable systems

    Full text link
    Metastability is observed when a physical system is close to a first order phase transition. In this paper the metastable behavior of a two state reversible probabilistic cellular automaton with self-interaction is discussed. Depending on the self-interaction, competing metastable states arise and a behavior very similar to that of the three state Blume-Capel spin model is found

    Basic Ideas to Approach Metastability in Probabilistic Cellular Automata

    Get PDF
    Cellular Automata are discrete--time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are discrete time Markov chains on lattice with finite single--cell states whose distinguishing feature is the \textit{parallel} character of the updating rule. We review some of the results obtained about the metastable behavior of Probabilistic Cellular Automata and we try to point out difficulties and peculiarities with respect to standard Statistical Mechanics Lattice models.Comment: arXiv admin note: text overlap with arXiv:1307.823

    A comparison between different cycle decompositions for Metropolis dynamics

    Get PDF
    In the last decades the problem of metastability has been attacked on rigorous grounds via many different approaches and techniques which are briefly reviewed in this paper. It is then useful to understand connections between different point of views. In view of this we consider irreducible, aperiodic and reversible Markov chains with exponentially small transition probabilities in the framework of Metropolis dynamics. We compare two different cycle decompositions and prove their equivalence
    • …
    corecore