6 research outputs found

    Senescence during early differentiation reduced the chondrogenic differentiation capacity of mesenchymal progenitor cells

    No full text
    Introduction: Mesenchymal stromal/progenitor cells (MSCs) are promising for cartilage cell-based therapies due to their chondrogenic differentiation capacity. However, MSCs can become senescent during in vitro expansion, a state characterized by stable cell cycle arrest, metabolic alterations, and substantial changes in the gene expression and secretory profile of the cell. In this study, we aimed to investigate how senescence and the senescence-associated secretory phenotype (SASP) affect chondrogenic differentiation of MSCs.Methods: To study the effect of senescence, we exposed MSCs to gamma irradiation during expansion or during chondrogenic differentiation (the pellet culture). Western blot analysis was used to evaluate MSCs response to the chondrogenic inductor TGF-β.Results: When senescence was induced during expansion or at day 7 of chondrogenic differentiation, we observed a significant reduction in the cartilage matrix. Interestingly, when senescence was induced at day 14 of differentiation, chondrogenesis was not significantly altered. Moreover, exposing chondrogenic pellets to the medium conditioned by senescent pellets had no significant effect on the expression of anabolic or catabolic cartilage markers, suggesting a neglectable paracrine effect of senescence on cartilage generation in our model. Finally, we show that senescent MSCs showed lower phosphorylated SMAD2 levels after TGFβ1 stimulation than control MSCs.Conclusion: Overall, these results suggest that the occurrence of senescence in MSCs during expansion or early differentiation could be detrimental for cartilage tissue engineering.Biomaterials & Tissue Biomechanic

    An integrated in silico-in vitro approach for identifying therapeutic targets against osteoarthritis

    Get PDF
    Background: Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations. Results: We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1. Conclusions: Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery. Graphical Abstract: [Figure not available: see fulltext.]Biomaterials & Tissue Biomechanic

    Effect of Inflammatory Signaling on Human Articular Chondrocyte Hypertrophy: Potential Involvement of Tissue Repair Macrophages

    Get PDF
    Objective: In osteoarthritis, chondrocytes tend to acquire a hypertrophic phenotype, which contributes to the modification of the extracellular matrix, resulting in permanent cartilage changes. In mouse chondrocytes, pro-inflammatory macrophages and pro-inflammatory cytokines have been shown to stimulate hypertrophy via the activation of the nuclear factor kappa B (NF-κB) pathway. Whether or not this also occurs in human chondrocytes remains unclear. We therefore aimed to investigate whether hypertrophy-like responses in human cartilage are driven mainly by intrinsic inflammatory signaling or shaped by specific macrophage populations. Design: Human articular chondrocytes were cultured with pro-inflammatory cytokines or medium conditioned by defined macrophage subsets. Furthermore, the effect of inhibition of NF-κB-dependent gene expression was evaluated using the NF-κB inhibitor SC-514. Hypertrophy was assessed by measuring the transcription level of alkaline phosphatase (ALPL), type X collagen (COL10A1), Indian hedgehog (IHH), and runt-related transcription factor 2 (RUNX2). Results: The expression of hypertrophic genes was not promoted in human chondrocytes by pro-inflammatory cytokines neither pro-inflammatory M(IFNγ + TNFα) macrophages. Inhibition of the NF-κB-dependent gene expression did not affect human articular chondrocyte hypertrophy. However, tissue repair M(IL4) macrophages induced hypertrophy by promoting the expression of COL10A1, RUNX2, and IHH. Conclusion: Intrinsic inflammatory signaling activation is not involved in the hypertrophic shift observed in human articular chondrocytes cultured in vitro. However, tissue repair macrophages may contribute to the onset of this detrimental phenotype in human osteoarthritic cartilage, given the effect observed in our experimental models.Biomaterials & Tissue Biomechanic

    A culture model to analyze the acute biomaterial-dependent reaction of human primary neutrophils in vitro

    Get PDF
    Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches is still scarcely understood. Here, we report an in vitro culture model that comprehensively describes the most important neutrophil functions in the light of tissue repair. We isolated human primary neutrophils from peripheral blood and exposed them to a panel of hard, soft, naturally- and synthetically-derived materials. The overall trend showed increased neutrophil survival on naturally derived constructs, together with higher oxidative burst, decreased myeloperoxidase and neutrophil elastase and decreased cytokine secretion compared to neutrophils on synthetic materials. The culture model is a step to better understand the immune modulation elicited by biomaterials. Further studies are needed to correlate the neutrophil response to tissue healing and to elucidate the mechanism triggering the cell response and their consequences in determining inflammation onset and resolution.Biomaterials & Tissue Biomechanic

    Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation

    No full text
    Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods: Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results: A lower DoF of GelMA did not affect cell migration in vitro (p ​= ​0.390) and led to a higher migration score ex vivo (p ​< ​0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p ​= ​0.031) and ex vivo (p ​< ​0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p ​< ​0.001). Conclusion: The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used. The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.Biomaterials & Tissue Biomechanic

    Intra-articular injection of triamcinolone acetonide sustains macrophage levels and aggravates osteophytosis during degenerative joint disease in mice

    Get PDF
    Background and purpose: Corticosteroids such as triamcinolone acetonide (TAA) are potent drugs administered intra-articularly as an anti-inflammatory therapy to relieve pain associated with osteoarthritis (OA). However, the ability of early TAA intervention to mitigate OA progression and modulate immune cell subsets remains unclear. Here, we sought to understand the effect of early intra-articular injection of TAA on OA progression, local macrophages, and peripheral blood monocytes. Experimental approach: Degenerative joint disease was induced by intra-articular injection of collagenase into the knee joint of male C57BL/6 mice. After 1 week, TAA or saline was injected intra-articularly. Blood was taken throughout the study to analyse monocyte subsets. Mice were killed at days 14 and 56 post-induction of collagenase-induced OA (CiOA) to examine synovial macrophages and structural OA features. Key results: The percentage of macrophages relative to total live cells present within knee joints was increased in collagenase- compared with saline-injected knees at day 14 and was not altered by TAA treatment. However, at day 56, post-induction of CiOA, TAA-treated knees had increased levels of macrophages compared with the knees of untreated CiOA-mice. The distribution of monocyte subsets present in peripheral blood was not altered by TAA treatment during the development of CiOA. Osteophyte maturation was increased in TAA-injected knees at day 56. Conclusion and implications: Intra-articular injection of TAA increases long-term synovial macrophage numbers and osteophytosis. Our findings suggest that TAA accentuates the progression of osteoarthritis-associated features when applied to an acutely inflamed knee.Biomaterials & Tissue Biomechanic
    corecore