2 research outputs found

    Modulation of Inflamed Synovium Improves Migration of Mesenchymal Stromal Cells in Vitro Through Anti-Inflammatory Macrophages

    Get PDF
    OBJECTIVE: Inflammation is known to negatively affect cartilage repair. However, it is unclear how inflammation influences the migration of mesenchymal stromal cells (MSCs) from the underlying bone marrow into the defect. We therefore aimed to investigate how synovial inflammation influences MSC migration, and whether modulation of inflammation with triamcinolone acetonide (TAA) may influence migration. DESIGN: Inflamed human osteoarthritic synovium, M(IFNγ+TNFα) pro-inflammatory macrophages, M(IL4) repair macrophages, M(IL10) anti-inflammatory macrophages, or synovial fibroblasts were cultured with/without TAA. Conditioned medium (CM) was harvested after 24 hours, and the effect on MSC migration was studied using a Boyden chamber assay. Inflammation was evaluated with gene expression and flow cytometry analysis. RESULTS: Synovium CM increased MSC migration. Modulation of synovial inflammation with TAA further increased migration 1.5-fold (P < 0.01). TAA significantly decreased TNFA, IL1B, and IL6 gene expression in synovium explants and increased CD163, a gene associated with anti-inflammatory macrophages. TAA treatment decreased the percentage of CD14+/CD80+ and CD14+/CD86+ pro-inflammatory macrophages and increased the percentage of CD14+/CD163+ anti-inflammatory macrophages in synovium explants. Interestingly, MSC migration was specifically enhanced by medium conditioned by M(IL4) macrophages and by M(IL10) macrophages treated with TAA, and unaffected by CM from M(IFNγ+TNFα) macrophages and synovial fibroblasts. CONCLUSION: Macrophages secrete factors that stimulate the migration of MSCs. Modulation with TAA increased specifically the ability of anti-inflammatory macrophages to stimulate migration, indicating that they play an important role in secreting factors to attract MSCs. Modulating inflammation and thereby improving migration could be used in approaches based on endogenous repair of full-thickness cartilage defects.Biomaterials & Tissue Biomechanic

    Bioprinting of a Zonal-Specific Cell Density Scaffold: A Biomimetic Approach for Cartilage Tissue Engineering

    No full text
    The treatment of articular cartilage defects remains a significant clinical challenge. This is partially due to current tissue engineering strategies failing to recapitulate native organization. Articular cartilage is a graded tissue with three layers exhibiting different cell densities: the superficial zone having the highest density and the deep zone having the lowest density. However, the introduction of cell gradients for cartilage tissue engineering, which could promote a more biomimetic environment, has not been widely explored. Here, we aimed to bioprint a scaffold with different zonal cell densities to mimic the organization of articular cartilage. The scaffold was bioprinted using an alginate-based bioink containing human articular chondrocytes. The scaffold design included three cell densities, one per zone: 20 × 106 (superficial), 10 × 106 (middle), and 5 × 106 (deep) cells/mL. The scaffold was cultured in a chondrogenic medium for 25 days and analyzed by live/dead assay and histology. The live/dead analysis showed the ability to generate a zonal cell density with high viability. Histological analysis revealed a smooth transition between the zones in terms of cell distribution and a higher sulphated glycosaminoglycan deposition in the highest cell density zone. These findings pave the way toward bioprinting complex zonal cartilage scaffolds as single units, thereby advancing the translation of cartilage tissue engineering into clinical practice.Biomaterials & Tissue Biomechanic
    corecore