130 research outputs found

    Modulation of the stability of the Salmonella fourU-type RNA thermometer

    Get PDF
    RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg2+ also affected the melting point of the fourU thermometer. Variations of the Mg2+ concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg2+ binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg2+ binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg2+ ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values delta G for Mg2+ binding determined by NMR are in agreement with data determined from CD measurements. Physiological Mg2+ concentrations reduce enthalpy and entropy values of uncorrelated base pair opening processes for almost all nucleobases

    An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease

    Get PDF
    AbstractThe proteolysis of regulatory proteins plays an important role in the control of gene expression. The Escherichia coli heat shock sigma factor RpoH (σ32) is highly unstable. Its instability is determined by interactions with the DnaK chaperone machine, RNA polymerase and the ATP-dependent protease FtsH. Bradyrhizobium japonicum expresses three RpoH proteins of which RpoH1 is highly stable. To determine which regions of E. coli RpoH determine protein lability, we generated a number of truncated versions and hybrid proteins. Truncation of N-terminal amino acids had no, and deletion of C-terminal amino acids only a minor effect on stability of RpoH. A major determinant of RpoH lability was mapped to a region of about 85 amino acids (residues 36–122) roughly comprising the sigma factor region 2. This is the first demonstration of an internal RpoH region being responsible for FtsH-mediated degradation

    Region C of the Escherichia coli heat shock sigma factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease

    Get PDF
    Transcription of most heat shock genes in Escherichia coli is initiated by the alternative sigma factor σ32 (RpoH). At physiological temperatures, RpoH is rapidly degraded by chaperone-mediated FtsH-dependent proteolysis. Several RpoH residues critical for degradation are located in the highly conserved region 2.1. However, additional residues were predicted to be involved in this process. We introduced mutations in region C of RpoH and found that a double mutation (A131E, K134V) significantly stabilized RpoH against degradation by the FtsH protease. Single-point mutations at these positions only showed a slight effect on RpoH stability. Both double and single amino acid substitutions did not impair sigma factor activity as demonstrated by a groE-lacZ reporter gene fusion, Western blot analysis of heat shock gene expression and increased heat tolerance in the presence of these proteins. Combined mutations in regions 2.1 and C further stabilized RpoH. We also demonstrate that an RpoH fragment composed of residues 37-147 (including regions 2.1 and C) is degraded in an FtsH-dependent manner. We conclude that in addition to the previously described turnover element in region 2.1, a previously postulated second region important for proteolysis of RpoH by FtsH lies in region C of the sigma facto

    The Bradyrhizobium japonicum phoB gene is required for phosphate-limited growth but not for symbiotic nitrogen fixation

    Get PDF
    We identified by cloning and DNA sequence analysis the phosphate regulatory gene phoB of Bradyrhizobium japonicum. The deduced gene product displayed pronounced similarity to the PhoB protein of Sinorhizobium meliloti (71.4% identical amino acids), Escherichia coli (50.2%) and other bacterial species. Insertion of a kanamycin resistance cassette into phoB led to impaired growth of the B. japonicum mutant in media containing approximately 25 μM phosphate or less. A standard plant infection test using wild-type and phoB-defective B. japonicum strains showed that the phoB mutation had no effect on the symbiotic properties of B. japonicum with its soybean host plan

    Translation on demand by a simple RNA-based thermosensor

    Get PDF
    Structured RNA regions are important gene control elements in prokaryotes and eukaryotes. Here, we show that the mRNA of a cyanobacterial heat shock gene contains a built-in thermosensor critical for photosynthetic activity under stress conditions. The exceptionally short 5´-untranslated region is comprised of a single hairpin with an internal asymmetric loop. It inhibits translation of the Synechocystis hsp17 transcript at normal growth conditions, permits translation initiation under stress conditions and shuts down Hsp17 production in the recovery phase. Point mutations that stabilized or destabilized the RNA structure deregulated reporter gene expression in vivo and ribosome binding in vitro. Introduction of such point mutations into the Synechocystis genome produced severe phenotypic defects. Reversible formation of the open and closed structure was beneficial for viability, integrity of the photosystem and oxygen evolution. Continuous production of Hsp17 was detrimental when the stress declined indicating that shutting-off heat shock protein production is an important, previously unrecognized function of RNA thermometers. We discovered a simple biosensor that strictly adjusts the cellular level of a molecular chaperone to the physiological need

    Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens

    Get PDF
    Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium

    Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution

    Get PDF
    In prokaryotes, RNA thermometers regulate a number of heat shock and virulence genes. These temperature sensitive RNA elements are usually located in the 5′-untranslated regions of the regulated genes. They repress translation initiation by base pairing to the Shine–Dalgarno sequence at low temperatures. We investigated the thermodynamic stability of the temperature labile hairpin 2 of the Salmonella fourU RNA thermometer over a broad temperature range and determined free energy, enthalpy and entropy values for the base-pair opening of individual nucleobases by measuring the temperature dependence of the imino proton exchange rates via NMR spectroscopy. Exchange rates were analyzed for the wild-type (wt) RNA and the A8C mutant. The wt RNA was found to be stabilized by the extraordinarily stable G14–C25 base pair. The mismatch base pair in the wt RNA thermometer (A8–G31) is responsible for the smaller cooperativity of the unfolding transition in the wt RNA. Enthalpy and entropy values for the base-pair opening events exhibit linear correlation for both RNAs. The slopes of these correlations coincide with the melting points of the RNAs determined by CD spectroscopy. RNA unfolding occurs at a temperature where all nucleobases have equal thermodynamic stabilities. Our results are in agreement with a consecutive zipper-type unfolding mechanism in which the stacking interaction is responsible for the observed cooperativity. Furthermore, remote effects of the A8C mutation affecting the stability of nucleobase G14 could be identified. According to our analysis we deduce that this effect is most probably transduced via the hydration shell of the RNA

    Intricate Crosstalk Between Lipopolysaccharide, Phospholipid and Fatty Acid Metabolism in Escherichia coli Modulates Proteolysis of LpxC

    Get PDF
    Lipopolysaccharides (LPS) in the outer membrane of Gram-negative bacteria provide the first line of defense against antibiotics and other harmful compounds. LPS biosynthesis critically depends on LpxC catalyzing the first committed enzyme in this process. In Escherichia coli, the cellular concentration of LpxC is adjusted in a growth rate-dependent manner by the FtsH protease making sure that LPS biosynthesis is coordinated with the cellular demand. As a result, LpxC is stable in fast-growing cells and prone to degradation in slow-growing cells. One of the factors involved in this process is the alarmone guanosine tetraphosphate (ppGpp) but previous studies suggested the involvement of yet unknown factors in LpxC degradation. We established a quantitative proteomics approach aiming at the identification of proteins that are associated with LpxC and/or FtsH at high or low growth rates. The identification of known LpxC and FtsH interactors validated our approach. A number of proteins involved in fatty acid biosynthesis and degradation, including the central regulator FadR, were found in the LpxC and/or FtsH interactomes. Another protein associated with LpxC and FtsH was WaaH, a LPS-modifying enzyme. When overproduced, several members of the LpxC/FtsH interactomes were able to modulate LpxC proteolysis. Our results go beyond the previously established link between LPS and phospholipid biosynthesis and uncover a far-reaching network that controls LPS production by involving multiple enzymes in fatty acid metabolism, phospholipid biosynthesis and LPS modification

    Modulation of the stability of the Salmonella fourU-type RNA thermometer

    Get PDF
    RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg2+ also affected the melting point of the fourU thermometer. Variations of the Mg2+ concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg2+ binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg2+ binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg2+ ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values ΔG for Mg2+ binding determined by NMR are in agreement with data determined from CD measurements
    corecore