14,264 research outputs found

    Large-N reduction of SU(N) Yang-Mills theory with massive adjoint overlap fermions

    Get PDF
    We study four dimensional large-N SU(N) Yang-Mills theory coupled to adjoint overlap fermions on a single site lattice. Lattice simulations along with perturbation theory show that the bare quark mass has to be taken to zero as one takes the continuum limit in order to be in the physically relevant center-symmetric phase. But, it seems that it is possible to take the continuum limit with any renormalized quark mass and still be in the center-symmetric physics. We have also conducted a study of the correlations between Polyakov loop operators in different directions and obtained the range for the Wilson mass parameter that enters the overlap Dirac operator.Comment: 8 pages, 5 figure

    Lacunary Fourier series and a qualitative uncertainty principle for compact Lie groups

    Get PDF
    We define lacunary Fourier series on a compact connected semisimple Lie group GG. If fL1(G)f \in L^1(G) has lacunary Fourier series, and vanishes on a non empty open set, then we prove that ff vanishes identically. This may be viewed as a qualitative uncertainty principle

    Truncated Overlap Fermions

    Get PDF
    In this talk I propose a new computational scheme with overlap fermions and a fast algorithm to invert the corresponding Dirac operator.Comment: LATTICE99(algorithms

    Two dimensional fermions in three dimensional YM

    Full text link
    Dirac fermions in the fundamental representation of SU(N) live on the surface of a cylinder embedded in R3R^3 and interact with a three dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite NN. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite NN limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.Comment: 21 pages, 7 figures, 5 table

    An Automated Social Graph De-anonymization Technique

    Full text link
    We present a generic and automated approach to re-identifying nodes in anonymized social networks which enables novel anonymization techniques to be quickly evaluated. It uses machine learning (decision forests) to matching pairs of nodes in disparate anonymized sub-graphs. The technique uncovers artefacts and invariants of any black-box anonymization scheme from a small set of examples. Despite a high degree of automation, classification succeeds with significant true positive rates even when small false positive rates are sought. Our evaluation uses publicly available real world datasets to study the performance of our approach against real-world anonymization strategies, namely the schemes used to protect datasets of The Data for Development (D4D) Challenge. We show that the technique is effective even when only small numbers of samples are used for training. Further, since it detects weaknesses in the black-box anonymization scheme it can re-identify nodes in one social network when trained on another.Comment: 12 page
    corecore