46 research outputs found

    IL-6 Protects against Hyperoxia-Induced Mitochondrial Damage via Bcl-2–Induced Bak Interactions with Mitofusions

    No full text
    Overexpression of IL-6 markedly diminishes hyperoxic lung injury, hyperoxia-induced cell death, and DNA fragmentation, and enhances Bcl-2 expression. We hypothesized that changes in the interactions between Bcl-2 family members play an important role in the IL-6–mediated protective response to oxidative stress. Consistent with this hypothesis, we found that IL-6 induced Bcl-2 expression, both in vivo and in vitro, disrupted interactions between proapoptotic and antiapoptotic factors, and suppressed H2O2-induced loss of mitochondrial membrane potential in vitro. In addition, IL-6 overexpression in mice protects against hyperoxia-induced lung mitochondrial damage. The overexpression of Bcl-2 in vivo prolonged the survival of mice exposed to hyperoxia and inhibited alveolar capillary protein leakage. In addition, apoptosis-associated DNA fragmentation was substantially reduced in these animals. This IL-6–mediated protection was lost when Bcl-2 was silenced, demonstrating that Bcl-2 is an essential mediator of IL-6 cytoprotection. Finally, Bcl-2 blocked the dissociation of Bak from mitofusion protein (Mfn) 2, and inhibited the interaction between Bak and Mfn1. Taken together, our results suggest that IL-6 induces Bcl-2 expression to perform cytoprotective functions in response to oxygen toxicity, and that this effect is mediated by alterations in the interactions between Bak and Mfns

    The Inflammasome Mediates Hyperoxia-Induced Alveolar Cell Permeability

    No full text

    Natural fullerenes from the K/T boundary layer at Anjar, Kutch, India

    No full text
    This article does not have an abstract

    Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities

    No full text
    The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4a–o) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity

    Low Cycle and Ratchetting Fatigue Behavior of High UTS/YS Ratio Reinforcing Steel Bars

    No full text
    Cyclic deformation behavior of high UTS/YS rebars has been studied employing both symmetric strain-controlled and asymmetric stress-controlled cycles in an attempt to understand the influence of UTS/YS ratio on fatigue life. While strain-controlled cyclic deformation did not exhibit a pronounced influence of UTS/YS ratio, a substantial life enhancement is noted for the asymmetric stress-controlled cyclic. Reasons for life enhancement were found to be due to the ratchetting strain development and the associated hardening behavior. An equivalent stress-based model has been used to predict both the symmetric and asymmetric fatigue lives of rebars
    corecore