1,047 research outputs found
Exchange between deep donors in semiconductors: a quantum defect approach
Exchange interactions among defects in semiconductors are commonly treated
within effective-mass theory using a scaled hydrogenic wave-function. However
such a wave-function is only applicable to shallow impurities; here we present
a simple but robust generalization to treat deep donors, in which we treat the
long-range part of the wavefunction using the well established quantum defect
theory, and include a model central-cell correction to fix the bound-state
eigenvalue at the experimentally observed value. This allows us to compute the
effect of binding energy on exchange interactions as a function of donor
distance; this is a significant quantity given recent proposals to carry out
quantum information processing using deep donors. As expected, exchange
interactions are suppressed (or increased), compared to the hydrogenic case, by
the greater localization (or delocalization) of the wavefunctions of deep
donors (or `super-shallow' donors with binding energy less then the hydrogenic
value). The calculated results are compared with a simple scaling of the
Heitler-London hydrogenic exchange; the scaled hydrogenic results give the
correct order of magnitude but fail to reproduce quantitatively our
calculations. We calculate the donor exchange in silicon including inter-valley
interference terms for donor pairs along the direction, and also show
the influence of the donor type on the distribution of nearest-neighbour
exchange constants at different concentrations. Our methods can be used to
compute the exchange interactions between two donor electrons with arbitrary
binding energy.Comment: 11 pages, 10 figures, RevTeX
Interplay between soft and hard hadronic components for identified hadrons in relativistic heavy ion collisions
We investigate the transverse dynamics in Au+Au collisions at \sqrt{s_NN}=200
GeV by emphasis upon the interplay between soft and hard components through p_T
dependences of particle spectra, ratios of yields, suppression factors, and
elliptic flow for identified hadrons. From hydrodynamics combined with
traversing minijets which go through jet quenching in the hot medium, we
calculate interactions of hard jets with the soft hydrodynamic components. It
is shown by the explicit dynamical calculations that the hydrodynamic radial
flow and the jet quenching of hard jets are the keys to understand the
differences among the hadron spectra for pions, kaons, and protons. This leads
to the natural interpretation for N_p/N_\pi ~ 1, R_{AA} >~ 1 for protons, and
v_2^p > v_2^\pi recently observed in the intermediate transverse momentum
region at Relativistic Heavy Ion Collider (RHIC).Comment: 11 pages, 9 figures; some references added; title changed, some data
points included in figure
Electron transport in Coulomb- and tunnel-coupled one-dimensional systems
We develop a linear theory of electron transport for a system of two
identical quantum wires in a wide range of the wire length L, unifying both the
ballistic and diffusive transport regimes. The microscopic model, involving the
interaction of electrons with each other and with bulk acoustical phonons
allows a reduction of the quantum kinetic equation to a set of coupled
equations for the local chemical potentials for forward- and backward-moving
electrons in the wires. As an application of the general solution of these
equations, we consider different kinds of electrical contacts to the
double-wire system and calculate the direct resistance, the transresistance, in
the presence of tunneling and Coulomb drag, and the tunneling resistance. If L
is smaller than the backscattering length l_P, both the tunneling and the drag
lead to a negative transresistance, while in the diffusive regime (L >>l_P) the
tunneling opposes the drag and leads to a positive transresistance. If L is
smaller than the phase-breaking length, the tunneling leads to interference
oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure
Re-Hardening of Hadron Transverse Mass Spectra in Relativistic Heavy-Ion Collisions
We analyze the spectra of pions and protons in heavy-ion collisions at
relativistic energies from 2 A GeV to 65+65 A GeV by using a jet-implemented
hadron-string cascade model. In this energy region, hadron transverse mass
spectra first show softening until SPS energies, and re-hardening may emerge at
RHIC energies. Since hadronic matter is expected to show only softening at
higher energy densities, this re-hardening of spectra can be interpreted as a
good signature of the quark-gluon plasma formation.Comment: 10 pages, 3 figures, 1 table, Poster presentation at QM2001, Revised
to correct latex error in citation on April 6, 200
Branching ratio change in K- absorption at rest and the nature of the Lambda(1405)
We investigate in-medium corrections to the branching ratio in K- absorption
at rest and their effect on the (positively and negatively) charged pion
spectrum. The in-medium corrections are due to Pauli blocking, which arises if
the Lambda(1405) is assumed to be a -nucleon bound state and leads to
a density and momentum dependent mass shift of the Lambda(1405). Requiring that
the optical potential as well as the branching ratio are derived from the same
elementary T-matrix, we find that the in-medium corrected, density dependent
T-matrix gives a better description of the K- absorption reaction than the
free, density-independent one. This result suggests that the dominant component
of the Lambda(1405) wave function is the bound state.Comment: 8 Pages, Revtex with epsf, and embedded 8 ps figure
Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?
Relativistic heavy ion collisions have reached energies that enable the
creation of a novel state of matter termed the quark-gluon plasma. Many
observables point to a picture of the medium as rapidly equilibrating and
expanding as a nearly inviscid fluid. In this article, we explore the evolution
of experimental flow observables as a function of collision energy and attempt
to reconcile the observed similarities across a broad energy regime in terms of
the initial conditions and viscous hydrodynamics. If the initial spatial
anisotropies are very similar for all collision energies from 39 GeV to 2.76
TeV, we find that viscous hydrodynamics might be consistent with the level of
agreement for v2 of unidentified hadrons as a function of pT . However, we
predict a strong collision energy dependence for the proton v2(pT). The results
presented in this paper highlight the need for more systematic studies and a
re-evaluation of previously stated sensitivities to the early time dynamics and
properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus
issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to
QCD Plasmas
Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions
We analyze the effects of different forms of the sound-velocity function
cs(T) on the hydrodynamic evolution of matter formed in the central region of
relativistic heavy-ion collisions. At high temperatures (above the critical
temperature Tc) the sound velocity is calculated from the recent lattice
simulations of QCD, while in the low temperature region it is obtained from the
hadron gas model. In the intermediate region we use different interpolations
characterized by the values of the sound velocity at the local maximum (at T =
0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature
dependent sound velocity functions yield the entropy density, which is
consistent with the lattice QCD simulations at high temperature. Our
calculations show that the presence of a distinct minimum of the sound velocity
leads to a very long (about 20 fm/c) evolution time of the system, which is not
compatible with the recent estimates based on the HBT interferometry. Hence, we
conclude that the hydrodynamic description is favored in the case where the
cross-over phase transition renders the smooth sound velocity function with a
possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki
Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model
A hadronic cascade model based on resonances and strings is used to study
mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS
energies (\sim 10\AGeV) systematically. Hadron transverse momentum and
rapidity distributions obtained with both cascade calculations and Glauber type
calculations are compared with experimental data to perform detailed discussion
about the importance of rescattering among hadrons. We find good agreement with
the experimental data without any change of model parameters with the cascade
model. It is found that rescattering is of importance both for the explanation
of high transverse momentum tail and for the multiplicity of produced
particles.Comment: 27 pages, 30 figure
CGC, Hydrodynamics, and the Parton Energy Loss
Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics
with initial conditions from the Color Glass Condensate (CGC). Minijet
components with parton energy loss in medium are also taken into account by
using parton density obtained from hydrodynamical simulations. We found that
CGC provides a good initial condition for hydrodynamics in Au+Au collisions at
RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure
- …