5,704 research outputs found
CEBAF at Higher Energies
This report summarizes topics in hadron spectroscopy and production which
could be addressed at CEBAF with an energy upgrade to GeV and
beyond. The topics discussed include conventional meson and baryon
spectroscopy, spectroscopy of exotica (especially molecules and hybrids), CP
and CPT tests using mesons, and new detector and accelerator options.Comment: (A Workshop held at CEBAF, Newport News, Virginia, 14-16 April 1994):
11 pages and 1 figure (available as hard copy from the authors),
ORNL/CCIP/94-15.Working Group Report on Hadron Spectroscopy and Productio
Provision of reactive power services by energy communities in MV distribution networks
The paper presents a procedure for the optimal operation of a community of prosumers connected to a medium voltage distribution network equipped with generation and storage units that considers
the penalization for low power factor operation, the exploitation of direct exchanges of both active and reactive power between the prosumers and the provision of reactive power services by the
community to the local distribution system operator and the transmission system operator. The proposed procedure calculates the maximum and minimum reactive power deviations that each community participant can provide with respect to the reference profile. A deterministic day-ahead scheduling problem is considered assuming the forecast of load and photovoltaic production known without uncertainties. The formulation of the optimization problems and the solution computational requirements are suitable for the inclusion in a stochastic approach. The effectiveness of the approach is supported by numerical simulations of the daily scheduling for different test cases
Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies
Despite the high accuracy of photometric redshifts (zphot) derived using
Machine Learning (ML) methods, the quantification of errors through reliable
and accurate Probability Density Functions (PDFs) is still an open problem.
First, because it is difficult to accurately assess the contribution from
different sources of errors, namely internal to the method itself and from the
photometric features defining the available parameter space. Second, because
the problem of defining a robust statistical method, always able to quantify
and qualify the PDF estimation validity, is still an open issue. We present a
comparison among PDFs obtained using three different methods on the same data
set: two ML techniques, METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts) and ANNz2, plus the spectral energy distribution
template fitting method, BPZ. The photometric data were extracted from the KiDS
(Kilo Degree Survey) ESO Data Release 3, while the spectroscopy was obtained
from the GAMA (Galaxy and Mass Assembly) Data Release 2. The statistical
evaluation of both individual and stacked PDFs was done through quantitative
and qualitative estimators, including a dummy PDF, useful to verify whether
different statistical estimators can correctly assess PDF quality. We conclude
that, in order to quantify the reliability and accuracy of any zphot PDF
method, a combined set of statistical estimators is required.Comment: Accepted for publication by MNRAS, 20 pages, 14 figure
Intracluster stellar population properties from N-body cosmological simulations -- I. Constraints at
We use a high resolution collisionless simulation of a Virgo--like cluster in
a CDM cosmology to determine the velocity and clustering properties of
the diffuse stellar component in the intracluster region at the present epoch.
The simulated cluster builds up hierarchically and tidal interactions between
member galaxies and the cluster potential produce a diffuse stellar component
free-flying in the intracluster medium. Here we adopt an empirical scheme to
identify tracers of the stellar component in the simulation and hence study its
properties. We find that at the intracluster stellar light is mostly
unrelaxed in velocity space and clustered in structures whose typical
clustering radii are about 50 kpc at R=400--500 kpc from the cluster center,
and predict the radial velocity distribution expected in spectroscopic
follow-up surveys. Finally, we compare the spatial clustering in the simulation
with the properties of the Virgo intracluster stellar population, as traced by
ongoing intracluster planetary nebulae surveys in Virgo. The preliminary
results indicate a substantial agreement with the observed clustering
properties of the diffuse stellar population in Virgo.Comment: 39 pages, 10 figures, 8 tables, in press on ApJ. Bad image quality
for some figures because resizing is neede
CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN
The design, construction and test of a charged particle detector made of
scintillation counters read by Silicon Photomultipliers (SiPM) is described.
The detector, which operates in vacuum and is used as a veto counter in the
NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a
spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating
charged particles
Segmental relaxation in semicrystalline polymers: a mean field model for the distribution of relaxation times in confined regimes
The effect of confinement in the segmental relaxation of polymers is
considered. On the basis of a thermodynamic model we discuss the emerging
relevance of the fast degrees of freedom in stimulating the much slower
segmental relaxation, as an effect of the constraints at the walls of the
amorphous regions. In the case that confinement is due to the presence of
crystalline domains, a quasi-poissonian distribution of local constraining
conditions is derived as a result of thermodynamic equilibrium. This implies
that the average free energy barrier for conformational
rearrangement is of the same order of the dispersion of the barrier heights,
, around . As an example, we apply the results to
the analysis of the -relaxation as observed by dielectric broad band
spectroscopy in semicrystalline poly(ethylene terephthalate) cold-crystallized
from either an isotropic or an oriented glass. It is found that in the latter
case the regions of cooperative rearrangement are significantly larger than in
the former.Comment: 10 pages, 4 figures .ep
A computational study of diffusion in a glass-forming metallic liquid
Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys
- …