2 research outputs found

    Sesame Extract Promotes Chemopreventive Effect of Hesperidin on Early Phase of Diethylnitrosamine-Initiated Hepatocarcinogenesis in Rats

    No full text
    The combination of natural products is an alternative approach to achieving chemopreventive potential. Accordingly, citrus hesperidin exhibits numerous biological activities, including anticarcinogenic activities, while the sesamin in sesame exhibits potent anticancer activities and lipid-lowering effects. We investigated the cancer chemopreventive effects of mixed sesame and orange seed extract (MSO) containing hesperidin and sesamin in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Rats were injected with DEN once a week for 3 weeks to induce hepatocarcinogenesis. Rats were fed with MSO and various compositions that included sesame extract (SE) and hesperidin. The 10-week administration of MSO more effectively inhibited the number and size of hepatic GST-P-positive foci than hesperidin in DEN-initiated rats. MSO and hesperidin decreased the number of PCNA-positive hepatocytes but increased the apoptotic cells in DEN-induced rats. Furthermore, MSO and its constituents suppressed hepatic triglyceride content concurrently along with the expression of fatty acid synthase. Although the 5-week administration of MSO or hesperidin did not alter hepatic, preneoplastic lesion formation in DEN-initiated rats, it alleviated DEN-induced hepatotoxicity. MSO and its applied compositions did not impact upon the cytochrome P450 system. In conclusion, sesame extract promoted the chemopreventive effect of hesperidin on DEN-induced early stage of hepatocarcinogenesis in rats. The inhibitory mechanisms are likely involved with the induction of cell apoptosis, suppression of cell proliferation and modulation of hepatic lipogenesis. This study may provide revelations in the development of alternative treatments against hepatocellular carcinoma

    Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis

    No full text
    In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 μg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis
    corecore