11 research outputs found

    The diagnostic ability of SPECT/CT fusion imaging for gastrointestinal bleeding : a retrospective study

    Get PDF
    Background Blood loss from the gastrointestinal tract can be an acute and life-threatening event. For the treatment of gastrointestinal bleeding, it is important to accurately detect gastrointestinal bleeding and to localize the sites of bleeding. The purpose of this study was to retrospectively assess the capabilities of SPECT/CT in the diagnosis of gastrointestinal bleeding by a comparison with planar imaging alone as well as planar and SPECT. Methods We conducted a retrospective analysis of 20 patients (21 examinations) who underwent gastrointestinal bleeding scintigraphy in the past 7 years and in whom the bleeding site was identified by endoscopy or capsule endoscopy, or in whom no evidence of gastrointestinal bleeding was identified during the clinical course. Five patients (5 examinations) were diagnosed by planar imaging (planar group). Eight patients (9 examinations) were diagnosed by planar imaging and SPECT (planar + SPECT group). Seven patients (7 examinations) were diagnosed by planar imaging and SPECT/CT (planar + SPECT/CT group). We calculated the diagnostic ability of each method in detecting the presence of bleeding, as well as the ability of each method to identify the sites of bleeding. The sensitivity, specificity, and accuracy of the methods were compared. Results The diagnostic ability of the three imaging methods in detecting the presence of gastrointestinal bleeding was as follows. Planar imaging showed 100% sensitivity (3/3), 100% specificity (2/2), and 100% accuracy (5/5). Planar + SPECT imaging showed 85.7% sensitivity (6/7), 100% specificity (2/2), and 88.9% accuracy (8/9). Planar + SPECT/CT imaging showed 100% sensitivity (6/6), 100% specificity (1/1), and 100% accuracy (7/7). The diagnostic ability of the three modalities in detecting the site of bleeding was as follows: planar, 33.3% (1/3); planar + SPECT, 71.4% (5/7); and planar + SPECT/CT, 100% (6/6). Conclusions All 3 imaging methods showed good accuracy in detecting the presence of gastrointestinal bleeding. The addition of SPECT or SPECT/CT made the anatomical position of the uptake clear and contributed to the localization of the site of gastrointestinal bleeding. Planar + SPECT/CT imaging therefore showed the highest diagnostic ability for detecting the site of gastrointestinal bleeding

    Brain Tumor CE on T1-Cube versus 3D SPGR

    Get PDF
    Purpose: T1-Cube (GE HealthCare) is a relatively new 3-dimensional (3D) fast spin-echo (FSE)-based magnetic resonance (MR) imaging sequence that uses a variable flip angle to acquire gap-free volume scans. We compared the gadolinium enhancement characteristics of a heterogeneous population of brain tumors imaged by T1-Cube and then 3D fast spoiled gradient recall acquisition in steady state (3D FSPGR) 3-tesla MR imaging to identify the superior modality for specific diagnostic purposes. Methods: We examined 61 lesions from 32 patients using the 2 sequences after administration of gadopentetic acid (Gd-DTPA; 0.1 mmol/kg). Two neuroradiologists independently measured each lesion twice using a region-of-interest (ROI) method. We measured the contrast-to-noise ratio (CNR), the difference in signal intensity (SI) between the tumor and normal white matter relative to the standard deviation (SD) of the SI within the lesion, for both post-contrast 3D FSPGR and post-contrast T1-Cube images of the same tumor and compared modality-specific CNRs for all tumors and in subgroups defined by tumor size, enhancement ratio, and histopathology. Results: The mean CNR was significantly higher on T1-Cube images than 3D FSPGR images for the total tumor population (1.85 ± 0.97 versus 1.12 ± 1.05, P < 0.01) and the histologic types, i.e., metastasis (P < 0.01) and lymphoma (P < 0.05). The difference in CNR was even larger for smaller tumors in the metastatic group (4.95 to 23.5 mm2) (P < 0.01). In contrast, mean CNRs did not differ between modalities for high grade glioma and meningioma. Conclusions: Gadolinium enhancement of brain tumors was generally higher when imaged by T1-Cube than 3D FSPGR, and T1-Cube with Gd enhancement may be superior to 3D FSPGR for detecting smaller metastatic tumors

    ASL and DSC MRI of brain tumors

    Get PDF
    Purpose : Arterial spin labeling (ASL) is an alternative method to Dynamic susceptibility contrast (DSC) perfusion MRI for brain tumors. However, ASL cerebral blood flow (CBF) can be easily affected by transit time. DSC MRI derived time to maximum of the residue function (Tmax) is possible to assess the transit time on ASL. Methods : Thirty patients with brain tumors were studied using ASL and DSC MRI. The relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), Tmax, and mean transit time (MTT) were obtained from DSC MRI. The ratios of the parameters were analyzed. Results : ASL CBF ratio correlated with the DSC rCBF ratio (r=0.78, p<0.001) and rCBV ratio (r=0.74, p<0.001). There was a moderate correlation between ASL CBF ratio and Tmax ratio (r=-0.43, p<0.05) in brain tumors. Conclusions : ASL CBF strongly correlated with DSC rCBF and rCBV. In addition, a negative correlation was found between ASL CBF and Tmax in brain tumors, indicating that these parameters would be affected by transit time. This may explain why ASL CBF is different from DSC rCBF and rCBV. The decreased DSC Tmax value may suggest high vascularity in a tumor

    多系統萎縮症におけるグリア細胞質内封入体を欠くオリゴデンドログリアの核の選択的な収縮 : 3次元的考察

    No full text
    京都大学0048新制・論文博士博士(医学)乙第12476号論医博第2010号新制||医||983(附属図書館)28117京都大学大学院医学研究科医学専攻(主査)教授 宮本 享, 教授 渡邉 大, 教授 福山 秀直学位規則第4条第2項該当Doctor of Medical ScienceKyoto UniversityDA

    ASL for Grading Nonenhancing Astrocytoma

    Get PDF
    Purpose: We evaluated the utility of arterial spin labeling (ASL) imaging of tumor blood flow (TBF) for grading non-enhancing astrocytic tumors. Materials and Methods: Thirteen non-enhancing astrocytomas were divided into high-grade (n = 7) and low-grade (n = 6) groups. Both ASL and conventional sequences were acquired using the same magnetic resonance machine. Intratumoral absolute maximum TBF (TBFmax), absolute mean TBF (TBFmean), and corresponding values normalized to cerebral blood flow (TBFmax and TBFmean ratios) were measured. The Mann-Whitney U test and receiver operating characteristic (ROC) curve analysis were used to assess the accuracy of TBF variables for tumor grading. Results: Compared with low-grade astrocytoma, high-grade astrocytoma exhibited significantly greater absolute TBFmax (90.93 ± 24.96 vs 46.94 ± 20.97 ml/100 g/min, P < 0.001), TBFmean (58.75 ± 19.89 vs 31.16 ± 17.63 ml/100 g/min, P < 0.001), TBFmax ratio (3.34 ± 1.22 vs 1.35 ± 0.5, P < 0.001), and TBFmean ratio (2.15 ± 0.94 vs 0.88 ± 0.41, P < 0.001). The TBFmax ratio yielded the highest diagnostic accuracy (sensitivity 100%, specificity 86.3%), while absolute TBFmean yielded the lowest accuracy (sensitivity 85.7%, specificity 70.1%) by ROC analysis. Conclusion: Parameters from ASL perfusion imaging, particularly TBFmax ratio, may be useful for distinguishing high-grade from low-grade astrocytoma in cases with equivocal conventional MRI findings

    The diagnostic ability of SPECT/CT fusion imaging for gastrointestinal bleeding: a retrospective study

    No full text
    Abstract Background Blood loss from the gastrointestinal tract can be an acute and life-threatening event. For the treatment of gastrointestinal bleeding, it is important to accurately detect gastrointestinal bleeding and to localize the sites of bleeding. The purpose of this study was to retrospectively assess the capabilities of SPECT/CT in the diagnosis of gastrointestinal bleeding by a comparison with planar imaging alone as well as planar and SPECT. Methods We conducted a retrospective analysis of 20 patients (21 examinations) who underwent gastrointestinal bleeding scintigraphy in the past 7 years and in whom the bleeding site was identified by endoscopy or capsule endoscopy, or in whom no evidence of gastrointestinal bleeding was identified during the clinical course. Five patients (5 examinations) were diagnosed by planar imaging (planar group). Eight patients (9 examinations) were diagnosed by planar imaging and SPECT (planar + SPECT group). Seven patients (7 examinations) were diagnosed by planar imaging and SPECT/CT (planar + SPECT/CT group). We calculated the diagnostic ability of each method in detecting the presence of bleeding, as well as the ability of each method to identify the sites of bleeding. The sensitivity, specificity, and accuracy of the methods were compared. Results The diagnostic ability of the three imaging methods in detecting the presence of gastrointestinal bleeding was as follows. Planar imaging showed 100% sensitivity (3/3), 100% specificity (2/2), and 100% accuracy (5/5). Planar + SPECT imaging showed 85.7% sensitivity (6/7), 100% specificity (2/2), and 88.9% accuracy (8/9). Planar + SPECT/CT imaging showed 100% sensitivity (6/6), 100% specificity (1/1), and 100% accuracy (7/7). The diagnostic ability of the three modalities in detecting the site of bleeding was as follows: planar, 33.3% (1/3); planar + SPECT, 71.4% (5/7); and planar + SPECT/CT, 100% (6/6). Conclusions All 3 imaging methods showed good accuracy in detecting the presence of gastrointestinal bleeding. The addition of SPECT or SPECT/CT made the anatomical position of the uptake clear and contributed to the localization of the site of gastrointestinal bleeding. Planar + SPECT/CT imaging therefore showed the highest diagnostic ability for detecting the site of gastrointestinal bleeding
    corecore