25 research outputs found

    Schwinger mechanism revisited

    Get PDF
    In this article, we review recent theoretical works on the Schwingermechanism of particle production in external electrical fields. Although the non-perturbative Schwinger mechanism is at the center of this discussion, many of the approaches that we discuss can cope with general time and space dependent fields, and therefore also capture the perturbative contributions to particle production.Comment: Review for Progress in Particle and Nuclear Physics. 76 pages, 36 figure

    Pair creation in boost-invariantly expanding electric fields and two-particle correlations

    Full text link
    Pair creation of scalar particles in a boost-invariant electric field which is confined in the forward light cone is studied. We present the proper-time evolution of momentum distributions of created particles, which preserve the boost invariance of the background field. The two-particle correlation of the created particles is also calculated. We find that long-range rapidity correlations may arise from the Schwinger mechanism in the boost-invariant electric field.Comment: 21 pages, 10 figures; v2: minor changes, to appear in Phys. Rev.

    Properties of the Boltzmann equation in the classical approximation

    Get PDF
    We study the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.Comment: 37 pages, 21 figure

    Schwinger mechanism enhanced by the Nielsen--Olesen instability

    Get PDF
    We discuss gluon production by the Schwinger mechanism in collinear color-electric and magnetic fields which may be realized in pre-equilibrium stages of ultra-relativistic heavy-ion collisions. Fluctuations of non-Abelian gauge fields around a purely color-magnetic field contain exponentially growing unstable modes in a longitudinally soft momentum region, which is known as the Nielsen--Olesen instability. With a color-electric field imposed parallelly to the color-magnetic field, we can formulate this instability as the Schwinger mechanism. This is because soft unstable modes are accelerated by the electric fields to escape from the instability condition. Effects of instability remain in the transverse spectrum of particle modes, leading to an anomalously intense Schwinger particle production.Comment: 9 pages, 1 figure, v2: Sec.4 is added. To appear in Phys.Lett.
    corecore