116 research outputs found

    Effect of MRI on preterm infants and their families: a randomised trial with nested diagnostic and economic evaluation.

    Get PDF
    BACKGROUND: We tested the hypothesis that routine MRI would improve the care and well-being of preterm infants and their families. DESIGN: Parallel-group randomised trial (1.1 allocation; intention-to-treat) with nested diagnostic and cost evaluations (EudraCT 2009-011602-42). SETTING: Participants from 14 London hospitals, imaged at a single centre. PATIENTS: 511 infants born before 33 weeks gestation underwent both MRI and ultrasound around term. 255 were randomly allocated (siblings together) to receive only MRI results and 255 only ultrasound from a paediatrician unaware of unallocated results; one withdrew before allocation. MAIN OUTCOME MEASURES: Maternal anxiety, measured by the State-Trait Anxiety inventory (STAI) assessed in 206/214 mothers receiving MRI and 217/220 receiving ultrasound. Secondary outcomes included: prediction of neurodevelopment, health-related costs and quality of life. RESULTS: After MRI, STAI fell from 36.81 (95% CI 35.18 to 38.44) to 32.77 (95% CI 31.54 to 34.01), 31.87 (95% CI 30.63 to 33.12) and 31.82 (95% CI 30.65 to 33.00) at 14 days, 12 and 20 months, respectively. STAI fell less after ultrasound: from 37.59 (95% CI 36.00 to 39.18) to 33.97 (95% CI 32.78 to 35.17), 33.43 (95% CI 32.22 to 34.63) and 33.63 (95% CI 32.49 to 34.77), p=0.02. There were no differences in health-related quality of life. MRI predicted moderate or severe functional motor impairment at 20 months slightly better than ultrasound (area under the receiver operator characteristic curve (CI) 0.74; 0.66 to 0.83 vs 0.64; 0.56 to 0.72, p=0.01) but cost £315 (CI £295-£336) more per infant. CONCLUSIONS: MRI increased costs and provided only modest benefits. TRIAL REGISTRATION: ClinicalTrials.gov NCT01049594 https://clinicaltrials.gov/ct2/show/NCT01049594.EudraCT: EudraCT: 2009-011602-42 (https://www.clinicaltrialsregister.eu/)

    An open-label, phase IV randomised controlled trial of two schedules of a four-component meningococcal B vaccine in UK preterm infants

    Get PDF
    Objective: To compare immunological responses of preterm infants to a four-component meningococcal B vaccine (4CMenB; Bexsero) following a 2+1 vs a 3+1 schedule, and to describe reactogenicity of routine vaccines. Design: An open-label, phase IV randomised study conducted across six UK sites. Setting: Neonatal units, postnatal wards, community recruitment following discharge. Participants: 129 preterm infants born at a gestation of 38.0°C than those in the 2+1 group who did not (group 2+1: 2% (n=1); 3+1: 14% (n=9); p=0.02). Conclusions: Both schedules were immunogenic in preterm infants, although a lower response against strain NZ98/254 was seen in the 2+1 schedule; ongoing disease surveillance is important in understanding the clinical significance of this difference. Trial registration number: NCT03125616

    Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.

    Get PDF
    A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts shows poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1:1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, while the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heats of mixing were calculated for a variety of alloy compositions with high heats of mixing calculated for both PdZn and Pd2Ga alloys, with values of ca. -0.6 eV/atom and ca. -0.8 eV/atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa. when in the presence of Ga2O3

    Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection

    Get PDF
    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population

    A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway is Associated with Major Depressive Disorder

    Get PDF
    AbstractBackgroundGenome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk.MethodsWe integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested.ResultsIn GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model.ConclusionsThese post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies

    The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol

    Get PDF
    The rise in atmospheric CO2 concentration and the concomitant rise in global surface temperature have prompted massive research effort in designing catalytic routes to utilize CO2 as a feedstock. Prime among these is the hydrogenation of CO2 to make methanol, which is a key commodity chemical intermediate, a hydrogen storage molecule, and a possible future fuel for transport sectors that cannot be electrified. Pd/ZnO has been identified as an effective candidate as a catalyst for this reaction, yet there has been no attempt to gain a fundamental understanding of how this catalyst works and more importantly to establish specific design criteria for CO2 hydrogenation catalysts. Here, we show that Pd/ZnO catalysts have the same metal particle composition, irrespective of the different synthesis procedures and types of ZnO used here. We demonstrate that all of these Pd/ZnO catalysts exhibit the same activity trend. In all cases, the β-PdZn 1:1 alloy is produced and dictates the catalysis. This conclusion is further supported by the relationship between conversion and selectivity and their small variation with ZnO surface area in the range 6–80 m2g–1. Without alloying with Zn, Pd is a reverse water-gas shift catalyst and when supported on alumina and silica is much less active for CO2 conversion to methanol than on ZnO. Our approach is applicable to the discovery and design of improved catalysts for CO2 hydrogenation and will aid future catalyst discovery

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    An open-label, phase IV randomised controlled trial of two schedules of a four-component meningococcal B vaccine in UK preterm infants

    Get PDF
    Objective: To compare immunological responses of preterm infants to a four-component meningococcal B vaccine (4CMenB; Bexsero) following a 2+1 vs a 3+1 schedule, and to describe reactogenicity of routine vaccines.   Design: An open-label, phase IV randomised study conducted across six UK sites.   Setting: Neonatal units, postnatal wards, community recruitment following discharge.   Participants: 129 preterm infants born at a gestation of 38.0°C than those in the 2+1 group who did not (group 2+1: 2% (n=1); 3+1: 14% (n=9); p=0.02).   Conclusions: Both schedules were immunogenic in preterm infants, although a lower response against strain NZ98/254 was seen in the 2+1 schedule; ongoing disease surveillance is important in understanding the clinical significance of this difference.   Trial registration number NCT03125616
    corecore