2,432 research outputs found

    Band Crossing studied by GCM with 3D-CHFB

    Full text link
    We solved the constrained Hill-Wheeler Equation, and found several signatures of multi-band crossing in 182 Os.Comment: LaTeX 3 pages, 3 eps figures; Contribution to International Conference, Nuclear Structure at the extreme,Lewes, UK, (1998) Jun.17-1

    Molecular Dynamics Study of Rotating Nanodroplets: Finite-size Effects and Nonequilibrium Deformation

    Full text link
    Noneqiuilibrium dynamics of rotating droplets are studied by molecular dynamics simulations. Small deviations from the theoretical prediction are observed when the size of a droplet is small, and the deviations become smaller as the size of the droplet increases. The characteristic timescale of the deformation is observed, and we find (i) the deformation timescale is almost independent of the rotating velocity with for small frequency and (ii) the deformation timescale becomes shorter as temperature increases. A simple model is proposed to explain the deformation dynamics of droplets.Comment: 14 pages, 8 figure, added references, changed titl

    Optical Identification of Close White Dwarf Binaries in the LISA Era

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to detect close white dwarf binaries (CWDBs) through their gravitational radiation. Around 3000 binaries will be spectrally resolved at frequencies > 3 mHz, and their positions on the sky will be determined to an accuracy ranging from a few tens of arcminutes to a degree or more. Due to the small binary separation, the optical light curves of >~ 30% of these CWDBs are expected to show eclipses, giving a unique signature for identification in follow-up studies of the LISA error boxes. While the precise optical location improves binary parameter determination with LISA data, the optical light curve captures additional physics of the binary, including the individual sizes of the stars in terms of the orbital separation. To optically identify a substantial fraction of CWDBs and thus localize them very accurately, a rapid monitoring campaign is required, capable of imaging a square degree or more in a reasonable time, at intervals of 10--100 seconds, to magnitudes between 20 and 25. While the detectable fraction can be up to many tens of percent of the total resolved LISA CWDBs, the exact fraction is uncertain due to unknowns related to the white dwarf spatial distribution, and potentially interesting physics, such as induced tidal heating of the WDs due to their small orbital separation.Comment: 4 pages, 2 figure

    Uniqueness of static spherically symmetric vacuum solutions in the IR limit of Ho\v{r}ava-Lifshitz gravity

    Full text link
    We investigate static spherically symmetric vacuum solutions in the IR limit of projectable nonrelativistic quantum gravity, including the renormalisable quantum gravity recently proposed by Ho\v{r}ava. It is found that the projectability condition plays an important role. Without the cosmological constant, the spacetime is uniquely given by the Schwarzschild solution. With the cosmological constant, the spacetime is uniquely given by the Kottler (Schwarzschild-(anti) de Sitter) solution for the entirely vacuum spacetime. However, in addition to the Kottler solution, the static spherical and hyperbolic universes are uniquely admissible for the locally empty region, for the positive and negative cosmological constants, respectively, if its nonvanishing contribution to the global Hamiltonian constraint can be compensated by that from the nonempty or nonstatic region. This implies that static spherically symmetric entirely vacuum solutions would not admit the freedom to reproduce the observed flat rotation curves of galaxies. On the other hand, the result for locally empty regions implies that the IR limit of nonrelativistic quantum gravity theories does not simply recover general relativity but includes it.Comment: 10 pages, accepted for publication in International Journal of Modern Physics

    Analysis of scale-free networks based on a threshold graph with intrinsic vertex weights

    Full text link
    Many real networks are complex and have power-law vertex degree distribution, short diameter, and high clustering. We analyze the network model based on thresholding of the summed vertex weights, which belongs to the class of networks proposed by Caldarelli et al. (2002). Power-law degree distributions, particularly with the dynamically stable scaling exponent 2, realistic clustering, and short path lengths are produced for many types of weight distributions. Thresholding mechanisms can underlie a family of real complex networks that is characterized by cooperativeness and the baseline scaling exponent 2. It contrasts with the class of growth models with preferential attachment, which is marked by competitiveness and baseline scaling exponent 3.Comment: 5 figure

    Gravitational Wave Astrometry for Rapidly Rotating Neutron Stars and Estimation of Their Distances

    Full text link
    We discuss an astrometric timing effect on data analysis of continuous gravitational waves from rapidly rotating isolated neutron stars. Special attention is directed to the possibility of determining their distances by measuring the curvature of the wave fronts. We predict that if continuous gravitational waves from an unknown neutron star with a stable rotation are detected around 1kHz within 1/3yr by initial LIGO detectors and the ellipticity parameter epsilon is smaller than 10^{-6}, the distance r to the source can be estimated with relative error \Delta r/r of \sim 10% by using the broad band configuration of advanced LIGO detectors over 3 years. By combining the observed amplitude of the waves with the estimated distance, information on the parameter ϵ\epsilon can be obtained purely through gravitational wave measurements.Comment: 6 pages, 1 figure, to appear in PR

    Suboptimal quantum-error-correcting procedure based on semidefinite programming

    Get PDF
    In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.Comment: 6 pages, no figure, Some notations differ from those in the PRA versio
    • …
    corecore