37,695 research outputs found

    Quantum canonical tensor model and an exact wave function

    Get PDF
    Tensor models in various forms are being studied as models of quantum gravity. Among them the canonical tensor model has a canonical pair of rank-three tensors as dynamical variables, and is a pure constraint system with first-class constraints. The Poisson algebra of the first-class constraints has structure functions, and provides an algebraically consistent way of discretizing the Dirac first-class constraint algebra for general relativity. This paper successfully formulates the Wheeler-DeWitt scheme of quantization of the canonical tensor model; the ordering of operators in the constraints is determined without ambiguity by imposing Hermiticity and covariance on the constraints, and the commutation algebra of constraints takes essentially the same from as the classical Poisson algebra, i.e. is first-class. Thus one could consistently obtain, at least locally in the configuration space, wave functions of "universe" by solving the partial differential equations representing the constraints, i.e. the Wheeler-DeWitt equations for the quantum canonical tensor model. The unique wave function for the simplest non-trivial case is exactly and globally obtained. Although this case is far from being realistic, the wave function has a few physically interesting features; it shows that locality is favored, and that there exists a locus of configurations with features of beginning of universe.Comment: 17 pages. Section 2 expanded to include fuzzy-space interpretation, and other minor change

    Signature and Angular Momentum in 3d-Cranked HFB states

    Get PDF
    In terms of the exaxt angular momentum projection, properties of the three dimensional cranked HFB (3d-CHFB) states are analyzed quantitatively in the context of the relation between the signature of an intrinsic symmetry and the parity of angular momentum, (-1)^I. We found that the tilted states have favorable features to describe states involved with high-K quantum number and/or odd total angular momentum. This implies that 3d-CHFB can describe properly the backbending phenomena like a "t-band and g-band" crossing, which is suggested in N=106 isotopes.Comment: 10 pages, 2 figure

    Oscillatory dynamics in evolutionary games are suppressed by heterogeneous adaptation rates of players

    Get PDF
    Game dynamics in which three or more strategies are cyclically competitive, as represented by the rock-scissors-paper game, have attracted practical and theoretical interests. In evolutionary dynamics, cyclic competition results in oscillatory dynamics of densities of individual strategists. In finite-size populations, it is known that oscillations blow up until all but one strategies are eradicated if without mutation. In the present paper, we formalize replicator dynamics with players that have different adaptation rates. We show analytically and numerically that the heterogeneous adaptation rate suppresses the oscillation amplitude. In social dilemma games with cyclically competing strategies and homogeneous adaptation rates, altruistic strategies are often relatively weak and cannot survive in finite-size populations. In such situations, heterogeneous adaptation rates save coexistence of different strategies and hence promote altruism. When one strategy dominates the others without cyclic competition, fast adaptors earn more than slow adaptors. When not, mixture of fast and slow adaptors stabilizes population dynamics, and slow adaptation does not imply inefficiency for a player.Comment: 4 figure
    corecore