14 research outputs found

    The Distribution of a Phage-Related Insertion Sequence Element in the Cyanobacterium, Microcystis aeruginosa

    Get PDF
    The cyanophage Ma-LMM01, specifically-infecting Microcystis aeruginosa, has an insertion sequence (IS) element that we named IS607-cp showing high nucleotide similarity to a counterpart in the genome of the cyanobacterium Cyanothece sp. We tested 21 strains of M. aeruginosa for the presence of IS607-cp using PCR and detected the element in strains NIES90, NIES112, NIES604, and RM6. Thermal asymmetric interlaced PCR (TAIL-PCR) revealed each of these strains has multiple copies of IS607-cp. Some of the ISs were classified into three types based on their inserted positions; IS607-cp-1 is common in strains NIES90, NIES112 and NIES604, whereas IS607-cp-2 and IS607-cp-3 are specific to strains NIES90 and RM6, respectively. This multiplicity may reflect the replicative transposition of IS607-cp. The sequence of IS607-cp in Ma-LMM01 showed robust affinity to those found in M. aeruginosa and Cyanothece spp. in a phylogenetic tree inferred from counterparts of various bacteria. This suggests the transfer of IS607-cp between the cyanobacterium and its cyanophage. We discuss the potential role of Ma-LMM01-related phages as donors of IS elements that may mediate the transfer of IS607-cp; and thereby partially contribute to the genome plasticity of M. aeruginosa

    The functional effect of Gly209 and Ile213 substitutions on lysozyme activity of family 19 chitinase encoded by cyanophage Ma-LMM01

    Get PDF
    ORF69 in the cyanophage infecting Microcystis aeruginosa, Ma-LMM01, shows homology to the family 19 chitinases where the catalytic domain has structural similarity to lysozyme. Chitinases hydrolyze chitin, a β-1, 4-linked monopolymer of N-acetylglucosamine (GlcNAc); whereas lysozymes hydrolyzes peptidoglycan, alternating β-1, 4-linked copolymers of N-acetylmuramic acid (MurNAc) and GlcNAc. Using amino acid sequence comparison to ORF69, the putative sugar binding residues, Gln162 and Lys165, from the barley chitinase (the model enzyme for the family 19 chitinases) corresponding to subsites −4 and −3 were found to be replaced with Gly209 and Ile213, respectively, in ORF69. To analyze their contribution to substrate binding affinity, ORF69 was cloned into Escherichia coli; and two mutant proteins G209Q and I213K were prepared using site-directed mutagenesis. The wild-type gene product (gp69) showed both lysozyme and chitinase activities. In contrast, the I213K mutant showed a decrease (70%) in lysozyme activity and a significant increase (50%) in chitinase activity; whereas, the G209Q mutant almost completely abolished both enzyme activities. The data suggest the Ile213 residue is involved in recognizing the substrate MurNAc; and Gly209 has significant contribution in chitinase and lysozyme activities for the wild-type gp69

    Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond.

    Get PDF
    Viruses play important roles in regulating the abundance, clonal diversity, and composition of their host populations. To assess their impact on the host populations, it is essential to understand the dynamics of virus infections in the natural environment. Cyanophages often carry host-like genes, including photosynthesis genes, which maintain host photosynthesis. This implies a diurnal pattern of cyanophage infection depending on photosynthesis. Here we investigated the infection pattern of Microcystis cyanophage by following the abundances of the Ma-LMM01-type phage tail sheath gene g91 and its transcript in a natural population. The relative g91 mRNA abundance within host cells showed a peak during the daylight hours and was lowest around midnight. The phage g91 DNA copy numbers in host cell fractions, which are predicted to indicate phage replication, increased in the afternoon, followed by an increase in the free-phage fractions. In all fractions, at least 1 of 71 g91 genotypes was observed (in tested host cell, free-phage, and RNA fractions), indicating that the replication cycle of the cyanophage (i.e., injection, transcription, replication, and release of progeny phages) was occurring. Thus, Microcystis cyanophage infection occurs in a diel cycle, which may depend on the light cycle. Additionally, our data show that the abundance of mature cyanophage produced within host cells was 1 to 2 orders of magnitude greater than that of released phages, suggesting that phage production may be higher than previously reported

    Ecological Dynamics of the Toxic Bloom-Forming Cyanobacterium Microcystis aeruginosa and Its Cyanophages in Freshwater▿

    No full text
    The abundance of potentially Microcystis aeruginosa-infectious cyanophages in freshwater was studied using g91 real-time PCR. A clear increase in cyanophage abundance was observed when M. aeruginosa numbers declined, showing that these factors were significantly negatively correlated. Furthermore, our data suggested that cyanophage dynamics may also affect shifts in microcystin-producing and non-microcystin-producing populations

    Possibility of Independence in ADL (Activities of Daily Living) for Patients with Cervical Spinal Cord Injuries : An Evaluation based on the Zancolli Classification of Residual Arm Functions

    Get PDF
    For patients with cervical spinal cord injuries to become independent in their ADL (Activities of Daily Living), residual arm function is very important. Also, age, sex, physical strength, obesity, spasticity, pain, contracture and motivation are related. We investigated the possibility of independence in ADL for patients with cervical spinal cord injuries, carrying out our evaluation based on the Zancolli Classification of Residual Arm Functions. Zancolli classification C6BII is taken as the boundary level for ADL independence. Rehabilitation is not only controlled by the patients with cervical spinal cord injuries themselves but also by the ability of the rehabilitation staff. This implies that taking responsibility in rehabilitation is important

    Genetic analyses of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4

    No full text
    High-grade pancreatic intraepithelial neoplasia (HG-PanIN) is the major precursor of pancreatic ductal adenocarcinoma (PDAC) and is an ideal target for early detection. To characterize pure HG-PanIN, we analysed 23 isolated HG-PanIN lesions occurring in the absence of PDAC. Whole-exome sequencing of five of these HG-PanIN lesions revealed a median of 33 somatic mutations per lesion, with a total of 318 mutated genes. Targeted next-generation sequencing of 17 HG-PanIN lesions identified KRAS mutations in 94% of the lesions. CDKN2A alterations occurred in six HG-PanIN lesions, and RNF43 alterations in five. Mutations in TP53, GNAS, ARID1A, PIK3CA, and TGFBR2 were limited to one or two HG-PanINs. No non-synonymous mutations in SMAD4 were detected. Immunohistochemistry for p53 and SMAD4 proteins in 18 HG-PanINs confirmed the paucity of alterations in these genes, with aberrant p53 labelling noted only in three lesions, two of which were found to be wild type in sequencing analyses. Sixteen adjacent LG-PanIN lesions from ten patients were also sequenced using targeted sequencing. LG-PanIN harboured KRAS mutations in 94% of the lesions; mutations in CDKN2A, TP53, and SMAD4 were not identified. These results suggest that inactivation of TP53 and SMAD4 are late genetic alterations, predominantly occurring in invasive PDAC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore