31 research outputs found
Recovery of Small-Sized Blood Vessels in Ischemic Bone Under Static Magnetic Field
Effects of static magnetic field (SMF) on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region). There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone
Recovery Effects of a 180 mT Static Magnetic Field on Bone Mineral Density of Osteoporotic Lumbar Vertebrae in Ovariectomized Rats
The effects of a moderate-intensity static magnetic field (SMF) on osteoporosis of the lumbar vertebrae were studied in ovariectomized rats. A small disc magnet (maximum magnetic flux density 180 mT) was implanted to the right side of spinous process of the third lumbar vertebra. Female rats in the growth stage (10 weeks old) were randomly divided into 4 groups: (i) ovariectomized and implanted with a disc magnet (SMF); (ii) ovariectomized and implanted with a nonmagnetized disc (sham); (iii) ovariectomized alone (OVX) and (vi) intact, nonoperated cage control (CTL). The blood serum 17-β-estradiol (E2) concentrations were measured by radioimmunoassay, and the bone mineral density (BMD) values of the femurs and the lumbar vertebrae were assessed by dual energy X-ray absorptiometry. The E2 concentrations were statistically significantly lower for all three operated groups than those of the CTL group at the 6th week. Although there was no statistical significant difference in the E2 concentrations between the SMF-exposed and sham-exposed groups, the BMD values of the lumbar vertebrae proximal to the SMF-exposed area statistically significantly increased in the SMF-exposed group than in the sham-exposed group. These results suggest that the SMF increased the BMD values of osteoporotic lumbar vertebrae in the ovariectomized rats
Environment: Peculiar Pigment Cell Neoplasm in Fish
Chromatophoroma in the croaker (Nibea mitsukurii) showed a unique geographic distribution. The contribution of environmental chemicals to the cause of chromatophoroma in the feral croaker is considered likely on the basis of the following results in our studies. 1) Chromatophoroma was induced in tank-reared N. mitsukurii by administration of certain kinds of known carcinogens such as 7,12-dimethyl-benz(a)anthra-cene, N-methyl-N'-nitro-N-nitrosoguanidine, and nifurpirinol. 2) Local accumulation of pigment-cell hyperplasia in the catfish (Protosus anguillaris) showed similar tendencies to those of chromatophoroma in N. mitsukurii. 3) Removal of contaminated sediment from the harbor and the river appeared to reduce the incidence from 47% in 1973–1983 to about 20% in 1985–1987. 4) Waste water from a factory located at the station where the incidence of the neoplasm was the highest contained mutagenic substances such as chloroacetones and glyoxals [5]. Exposure of catfish to the waste water induced pigment-cell hyperplasia on the skin. J Invest Dermatol 92:248S–254S, 198
Static Magnetic Field Effects on Impaired Peripheral Vasomotion in Conscious Rats
We investigated the SMF effects on hemodynamics in the caudal artery-ligated rat as an in vivo ischemia model using noninvasive near-infrared spectroscopy (NIRS) combined with power spectral analysis by fast Fourier transform. Male Wistar rats in the growth stage (10 weeks old) were randomly assigned into four groups: (i) intact and nonoperated cage control (n=20); (ii) ligated alone (n=20); (iii) ligated and implanted with a nonmagnetized rod (sham magnet; n=22); and (vi) ligated and implanted with a magnetized rod (n=22). After caudal artery ligation, a magnetized or unmagnetized rod (maximum magnetic flux density of 160 mT) was implanted transcortically into the middle diaphysis of the fifth caudal vertebra. During the experimental period of 7 weeks, NIRS measurements were performed in 3- , 5- , and 7-week sessions and the vasomotion amplitude and frequency were analyzed by fast Fourier transform. Exposure for 3–7 weeks to the SMF significantly contracted the increased vasomotion amplitude in the ischemic area. These results suggest that SMF may have a regulatory effect on rhythmic vasomotion in the ischemic area by smoothing the vasomotion amplitude in the early stage of the wound healing process
Effects of RGDS sequence genetically interfused in the silk fibroin light chain protein on chondrocyte adhesion and cartilage synthesis.
Initial chondrocyte-silk fibroin interactions are implicated in chondrogenesis when using fibroin as a scaffold for chondrocytes. Here, we focused on integrin-mediated cell-scaffold adhesion and prepared cell adhesive fibroin in which a tandem repeat of the Arg-Gly-Asp-Ser (RGDS) sequence was genetically interfused in the fibroin light chain (L-chain) (L-RGDSx2 fibroin). We investigated the effects of the sequence on chondrocyte adhesion and cartilage synthesis, in comparison to the effects of fibronectin. As the physicochemical surface properties (e.g., wettability and zeta potential) of the fibroin substrate were not affected by the modification, specific cell adhesion to the RGDS predominately changed the chondrocyte adhesive state. This suggestion was also supported by the competitive inhibition of chondrocyte attachment to the L-RGDSx2 fibroin substrate with soluble RGD peptides in the medium. Unlike fibronectin, the expression of RGDS in the fibroin L-chain had no effect on chondrocyte spreading area but enhanced mRNA expression levels of integrins alpha5 and beta1, and aggrecan at 12 h after seeding. Although both the sequence and fibronectin increased cell adhesive force, chondrocytes grown on the fibroin substrate exhibited a peak in the force with time in culture. These results suggested that moderate chondrocyte adhesion to fibroin induced by the RGDS sequence was able to maintain the chondrogenic phenotype and, from the histology findings, the sequence could facilitate chondrogenesis
Amount of TNF-α released from macrophages reacting with polyethylene particles showed dose-dependent relationship to the total surface area of added particles
The immune response to ultra-high molecular weight polyethylene wear debris is thought to be one of the major causes of osteolysis and aseptic loosening. An in-vitro method for the measurement of the response is necessary in order to priori estimate the lifespan of the implants. It is of importance to distinguish the bioactivity of various polyethylene biomaterials. The current research focused on the inverse culturing process, which was shown to be effective to evaluate the biological reaction of mouse macrophages and wear particles by estimating the amount of inflammatory cytokines. In this study, several improvements were carried out through trial quantification. Silicon sheet was introduced instead of PVC seal to remove air bubbles and to eliminate the influence of potentially-attached endotoxin. Calculations along with experiments according to Stokes’ law were also performed to determine the reaction time and the minimum particle size that can be phagocytosed by macrophages in the improved method. The authors co-incubated mouse macrophages and polyethylene particles in different sizes, densities and molecular weights using the new method. The result suggests that the amount of tumour necrosis factor-α (TNF-α) generated is dosage dependent on the total surface area of particles added regardless of particle size, density and molecular weight of polyethylene