536 research outputs found
Recommended from our members
Numerical Simulation of Microflows with Moment Method
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A series of hyperbolic moment equations is derived for the Boltzmann equation with ES-BGK collision term. These systems can be obtained through a slight modification in the deduction of Grad’s moment equations, and such a method is suitable for deriving systems with moments up to any order. The systems are equipped with proper wall boundary conditions so that the number of equations in the boundary conditions is consistent with the hyperbolic structure of the moment system. Our numerical scheme for solving the hyperbolic moment systems is of second order, and a special mapping method is introduced so that the numerical efficiency is highly enhanced. Our numerical results are validated by comparison with the DSMC results. Through the numerical solutions of systems with increasing number of moments, the convergence of the moment method is clearly observed
Recommended from our members
Calibration of lubrication force measurements by lattice Boltzmann simulations
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Many experiments explore the hydrodynamic boundary of a surface by approaching a colloidal sphere and measuring the occurring lubrication force. However, in this case many different parameters like wettability and surface roughness influence the result. In the experiment these cannot be separated easily. For a deeper understanding of such surface effects a tool is required that predicts the influence of different surface properties. Here computer simulations can help. In this paper we present lattice Boltzmann simulations of a sphere submerged in a Newtonian liquid and show that our method is able to reproduce the theoretical predictions. In order to provide high precision simulation results the influence of finite size effects has to be controlled. We study the influence of the required system size and resolution of the sphere and demonstrate that already moderate computing ressources allow to keep the error below 1%.This study is funded by DFG priority program SPP 1164
Recommended from our members
Variational approach to gas flows in microchannels on the basis of the Boltzmann equation for hard-sphere molecules
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The objective of the present paper is to provide an analytic expression for the first- and second-order velocity slip coefficients. Therefore, gas flow rates in microchannels have been rigorously evaluated in the near-continuum limit by means of a variational technique which applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator. The diffuse-specular reflection condition of Maxwell’s type has been considered in order to take into account the influence of the accommodation coefficient on the slip parameters. The
polynomial form of Knudsen number obtained for the Poiseuille mass flow rate and the values of the second order velocity slip coefficients found on the basis of our variational solution of the linearized Boltzmann equation for hardsphere molecules are analyzed in the frame of potential applications of classical continuum numerical tools (as lattice Boltzmann methods) in simulations of microscale flows
Recommended from our members
Control of convection by dfferent buoyancy forces
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Thermal convection in vertical concentric cylinders under the influence of di erent buoyancy force fields is the focus
of the experimental project ’CiC’(Convection in Cylinders). The objectives are to investigate thermal convective flow in natural gravity with axial buoyancy and in micro-gravity environment of a parabolic flight with radial buoyancy, and additionally also the superposition of both buoyancy force fields. The radial buoyancy is forced by the dielectrophoretic effect due to applying a high-voltage potential Vapp between the two cylinders. The experiment contains two separately fully automated experiment cells, which differ only in their radius ratio η = b/a. The convective flow is observed with tracer particles and laser light sheet illumination. For the case of natural convection, there exists a stable single convective cell over the whole Rayleigh number domain with Ra ~ ΔT with increasing the temperature difference between the inner and outer cylindrical boundaries. For the case of a pure dielectrophoretic driven convection in micro-gravity environment, stratification effects are described with RaE ~ Vapp with increasing the high voltage potential. The superposition of both buoyancy forces indicates the disturbance of the single convective cell and therewith the onset of instabilities at very low Ra for the smaller η. The presented results demonstrate that the dielectrophoretic effect can be used for flow control and enhancement of heat transfer applications in space as well as on Earth.The “Convection in Cylinders (CiC)” project is funded by the German Aerospace Center DLR within the “GeoFlow” project (grant no. 50 WM 0122 and 50 WM 0822). The authors would also like to thank ESA (grant no. AO-99-049) for funding “GeoFlow” and the “GeoFlow” Topical Team (grant no. 18950/05/NL/VJ)
Recommended from our members
Molecular dynamics simulation for microscope insight of liquid evaporation on a heated surface
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Molecular dynamics (MD) simulation is a very effective tool that gives a microscopic insight into the mechanisms of complex physical phenomena. This paper uses MD simulation to study the evaporation of a liquid from a heated surface. As for the argon/platinum model, a group of simulations starts from a fixed lower wall with the temperature of 110K. In this system, argon molecule numbers of 784, 1200, 1440 are
simulated respectively. Additional simulations for argon models are based on superheat conditions, which indicate that the variation of ultra-thin liquid film thickness is very small with the different numbers of argon molecules. Also, it shows that if the argon molecule numbers increase, the extra molecules accumulate near the cooling wall. In terms of the MD simulation for the water/magnesium model, water evaporates from a magnesium heating wall at different temperatures and an initial study has been carried out. Moreover, further
and more accurate simulations will be improved in the near future
Recommended from our members
On the influence of tube row number for mixed convection around micro tubes
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.A numerical simulation was performed on the heat transfer of mixed convection for fluid flowing across a micro-tube bundle by using Lattice Boltzmann Method. Firstly, the program code was validated by using a bench mark case of natural convection around a hot single tube inside a square enclosure. The local and averaged heat transfer coefficient of each tube in the bundle with various row numbers was calculated. Numerous cases have been simulated from a weak natural convection case (forced convection) to a pure natural convection case. The results indicate that the total averaged Nusselt number outside the tubes gradually decreases and becomes almost a constant with tube row number at low Reynolds number, which is different from the case of conventional scaled tube. The averaged Nusselt numbers and temperature fields for various situations were compared. The other influencing factors except of the tube row number on the heat transfer behavior of a tube bundle were also summarized and discussed.Tianjin Science and Technology Committee Key Project fund, under Grant No. 08JCZDC20300 and NSF of China under grant No. 4097216
Recommended from our members
The study of the influence of morphology anisotropy of clusters of superparamagnetic nanoparticle on magnetic hysteresis by Monte Carlo simulations
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Nowadays, extensive attentions have been focussed on the study of induction heating implanted magnetic nanoparticle under AC magnetic field for cancer hyperthermia treatment. Colloidal cluster composed of superparamagnetic nanoparticle has shown great potential for efficient hyperthermia heating. However, the relationship between cluster properties and heating efficiency is not clear. In this work, we investigate the influence of morphology anisotropy of cluster of superparamagnetic nanoparticle on magnetic hysteresis by Monte Carlo simulation. Five kinds of clusters with different shapes and structure are studied. We find that the morphology anisotropy of cluster changes the magnetic loss by affecting the tendency of cluster to remain magnetically aligned with the field orientation. A large aspect ratio of the length of cluster along the field orientation to the width perpendicular to the orientation can increase the amount of energy converted per cycle significantly. Lacking morphology anisotropy will make the magnetic hysteresis of cluster numb to the manipulation of cluster properties
Recommended from our members
Microcirculatory blood flow: Functional implications of a complex fluid
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute
Recommended from our members
Prediction and evolution of drop-size distribution of an ultrasonic vibrating microchannel
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.We report in this paper the evolution of a physically-based drop size-distribution coupling the Maximum Entropy Formalism and the Monte Carlo method to solve the distribution equation of a spray. The atomization is performed by a new Spray On Demand (SOD) device which exploits ultrasonic generation via a Faraday instability. The Modified Hamilton’s principle is used to describe the fluid structure/interaction with a vibrating micro-channel conveying fluid excited by a pointwise piezoactuator. We combine to the
fluid/structure description a physically based approach for predicting the drop-size distribution within the framework of the Maximum Entropy Formalism (MEF) using conservation laws of energy and mass
coupling with the three-parameter generalized Gamma distribution. The prediction and experimental validation of the drop size distribution of a new Spray On Demand print-head is performed. The dynamic
model is shown to be sensitive to operating conditions, design parameter and physico-chemical properties of the fluid and its prediction capability is good. We also report on a model allowing the evolution of drop sizedistribution. Deriving the discrete and continuous population balance equation, the Mass Flow Algorithm is formulated taking into account interactions between droplets via coalescence. After proposing a kernel for
coalescence, we solve the time dependent drop size distribution using a Monte Carlo Method which is shown to be convergent. The drops size distribution upon time shows the effect of spray droplets coalescence
Recommended from our members
Flow and particle deposition using an integrated CFD model of the respiratory system
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.In the present study a theoretical investigation on flow, particle motion, and deposition in the respiratory system is reported. An integrated computational model of the respiratory system is developed
comprised of nine sequential computational blocks corresponding to the nasal cavity, the pharyngo-trachea, and a series of branches of the pulmonary system. Airflow during steady-state inhalation inside the human respiratory system was determined using computational fluid dynamics (CFD) for inlet velocities, vin = 1-20 m/s, corresponding to inhalation flow rates of 9 to 180 L/min, and particle deposition was examined in detail for particle sizes, D=1-20μm. Local deposition efficiencies as well as spatial distribution of deposited particles were found to be strongly dependent on the particle size and volumetric flow rate
- …