26 research outputs found

    Effects of fracturing fluid composition and other factors on improving the oil imbibition recovery of shale reservoir

    Get PDF
    Imbibition is an important mechanism of shale reservoir development. In exploring the factors affecting the enhanced recovery of shale reservoirs by imbibition, laboratory spontaneous and forced imbibition experiments were conducted using outcrop cores of shale reservoirs. The effects of imbibition agent composition, fracture, and pressure on imbibition are obtained in this work based on imbibition recovery test findings and imbibition theory. Results show that the imbibition curve includes three stages, namely, imbibition, transition, and stability. Among the components of compound fracking fluid, surfactants have the greatest impact, whereas emulsifiers have the least impact. Complex crack structures and high-temperature environments can improve imbibition recovery. Pressure is inversely proportional to imbibition recovery in the highly stress-sensitive shale reservoir. In addition, the throughput time of the imbibition agent has an optimal value in the shale reservoir. After the huff-n-puff time exceeds the optimal value, the imbibition agent should be replaced to continuously improve the imbibition effect. The research results can serve as a basis for enhancing oil recovery through imbibition.Document Type: Original articleCited as: Li, S., Ye, Z., Wang, J., Tang, L., Lai, N. Effects of fracturing fluid composition and other factors on improving the oil imbibition recovery of shale reservoir. Capillarity, 2023, 9(3): 45-54. https://doi.org/10.46690/capi.2023.12.0

    On-Policy Pixel-Level Grasping Across the Gap Between Simulation and Reality

    Full text link
    Grasp detection in cluttered scenes is a very challenging task for robots. Generating synthetic grasping data is a popular way to train and test grasp methods, as is Dex-net and GraspNet; yet, these methods generate training grasps on 3D synthetic object models, but evaluate at images or point clouds with different distributions, which reduces performance on real scenes due to sparse grasp labels and covariate shift. To solve existing problems, we propose a novel on-policy grasp detection method, which can train and test on the same distribution with dense pixel-level grasp labels generated on RGB-D images. A Parallel-Depth Grasp Generation (PDG-Generation) method is proposed to generate a parallel depth image through a new imaging model of projecting points in parallel; then this method generates multiple candidate grasps for each pixel and obtains robust grasps through flatness detection, force-closure metric and collision detection. Then, a large comprehensive Pixel-Level Grasp Pose Dataset (PLGP-Dataset) is constructed and released; distinguished with previous datasets with off-policy data and sparse grasp samples, this dataset is the first pixel-level grasp dataset, with the on-policy distribution where grasps are generated based on depth images. Lastly, we build and test a series of pixel-level grasp detection networks with a data augmentation process for imbalance training, which learn grasp poses in a decoupled manner on the input RGB-D images. Extensive experiments show that our on-policy grasp method can largely overcome the gap between simulation and reality, and achieves the state-of-the-art performance. Code and data are provided at https://github.com/liuchunsense/PLGP-Dataset

    Case Report: Hypothyroidism Misdiagnosed as Fulminant Myocarditis in a Child

    Get PDF
    Background: Hypothyroidism can lead to bradycardia, reduced cardiac output, cardiac enlargement, and abnormal electrocardiogram. However, hemodynamic instability and malignant arrhythmias due to hypothyroidism is rarely reported in children.Patient Findings: We report the case of a child with third-degree atrioventricular block, cardiogenic shock, and Adams Stokes Syndrome, who was initially misdiagnosed with fulminant myocarditis and was later found to have hypothyroidism during treatment.Summary: The child's condition did not improve after the administration of gamma globulin, methylprednisolone, and isoproterenol. Even after the placement of temporary pacemakers, the therapeutic effect was still not ideal. Upon reviewing the medical history, the child's condition improved rapidly after levothyroxine supplementation.Conclusions: Hypothyroidism is a common disease, but secondary severe cardiovascular lesions are particularly rare in children. Therefore, the delay in diagnosis can lead to serious cardiovascular manifestations. When pediatric patients develop severe AVB and bradycardia, hypothyroidism should be considered as a possible cause

    Synthesis, Optimization, and Characterization of Fluorescent Particle Preformed Gel

    No full text
    Performed gels are widely used in fields to support profile modification and Enhance Oil Recovery. Previous studies of profile modification of performed gels mainly used the index of pressure, resistance factor, or residual resistance factor to represent their ability. However, there is a lack of methods available to directly study their modification ability. In this article, the preformed gels with fluorescence properties, CQDs@PPG, would provide a new way to explore the profile modification of preformed gels. This paper uses poly (acrylamide, sodium p-styrene sulfonate), carbon quantum dots, and N,N-methylenebisacrylamide to prepare the CQDs@PPG via inverse emulsion polymerization. The morphology, size distribution, structure, fluorescence characteristics, surface potential thermal stability, viscosity changes, and viscoelastic properties of CQDs@PPG were analyzed. Moreover, the fluorescence properties of CQDs@PPG under different temperature, salinity, and pH were examined. Results indicate that the CQDs@PPG have excellent stability and that pH and salinity have little influence on their fluorescence properties. Further, only the temperature would affect the fluorescence properties of CQDs@PPG, but that effect is reversible after the temperature drops. By examining the fluorescence intensity, it would be more direct for researchers to study the profile modification in further experiments

    Synthesis, Optimization, and Characterization of Fluorescent Particle Preformed Gel

    No full text
    Performed gels are widely used in fields to support profile modification and Enhance Oil Recovery. Previous studies of profile modification of performed gels mainly used the index of pressure, resistance factor, or residual resistance factor to represent their ability. However, there is a lack of methods available to directly study their modification ability. In this article, the preformed gels with fluorescence properties, CQDs@PPG, would provide a new way to explore the profile modification of preformed gels. This paper uses poly (acrylamide, sodium p-styrene sulfonate), carbon quantum dots, and N,N-methylenebisacrylamide to prepare the CQDs@PPG via inverse emulsion polymerization. The morphology, size distribution, structure, fluorescence characteristics, surface potential thermal stability, viscosity changes, and viscoelastic properties of CQDs@PPG were analyzed. Moreover, the fluorescence properties of CQDs@PPG under different temperature, salinity, and pH were examined. Results indicate that the CQDs@PPG have excellent stability and that pH and salinity have little influence on their fluorescence properties. Further, only the temperature would affect the fluorescence properties of CQDs@PPG, but that effect is reversible after the temperature drops. By examining the fluorescence intensity, it would be more direct for researchers to study the profile modification in further experiments

    Law and Mechanism Study on Salt Resistance of Nonionic Surfactant (Alkyl Glycoside) Foam

    No full text
    In this paper, the effects of three cations, Ca2+, Mg2+, and Na+, on the stability of APG foams were investigated experimentally. The results show that cations can slow down the process of liquid drainage and coarsening of APG foam, which is beneficial to the stability of the foam. The salt resistance mechanism of nonionic surfactant (APG) was investigated by molecular dynamics simulation and compared with that of anionic surfactant (SDS) foam. Firstly, the distribution characteristics of cations in APG foam and SDS foam were explored. It was found that the cations in the APG foam were mainly distributed in the water layer away from the head groups, and the cations in the SDS foam were more likely to appear near the head groups. Then, the hydration of the head groups and the cation was investigated. The results show that cations have little effect on the number of water molecules in the hydration layer of APG head groups but will reduce the diffusion capacity of water molecules and increase the water retention capacity of the foam film, thereby enhancing the foam stability. The addition of cations will reduce the water retention capacity of the SDS foam film. In addition, the behavior of surfactant head and tail groups was also analyzed. It was found that the cations made the head groups of APG more inclined to be aligned perpendicular to the liquid interface, and the tail groups were more inclined to realize a cross-arrangement and cover the gas–liquid interface. This can not only slow down the gas phase mass transfer process of the adjacent foam and slow down the coarsening process of the foam but also increase the viscoelasticity and anti-disturbance ability of the foam film. The cations will weaken the staggered arrangement of the SDS molecular tail groups, and at the same time, will cause the SDS molecules to aggregate, which greatly reduces the stability of the foam

    Development of Hydrophobic-Modified Nanosilica for Pressure Reduction and Injection Increase in an Ultra-Low-Permeability Reservoir

    No full text
    A low-permeability reservoir contains many fine pore throat structures, which result in excessive injection pressure of the water injection well and difficult water injection in the production process of a low-permeability reservoir. In this study, a new silane coupling agent was synthesized via the ring-opening reaction between dodecyl amine and KH-560 (γ-propyl trimethoxysilane). The modified KH-560 was reacted with nano-SiO2 to synthesize the modified nano-SiO2 as an antihypertensive additive. Fourier infrared spectroscopy, thermogravimetric analysis and laser scattering were used to characterize this modified nano-SiO2. The results show that the particle size of the modified nano-SiO2 is less than 60 nm. The test results of the water contact angle show that the dispersion system can increase the rock contact angle from 37.34° to 136.36°, which makes the rock surface transform from hydrophilicity to hydrophobicity and reduce the binding effect of rock with water. The dispersion test shows that the modified nano-SiO2 has good dispersion stability under alkaline conditions with TX-100 (Polyethylene glycol octylphenyl ether) as the dispersant. The antiswelling test results show that the antiswelling rate of this modified nano-SiO2 is 42.9%, which can efficiently prevent the clay expansion in the formation to reduce the injection pressure. The core displacement test results show that its depressurization rate reaches 49%. The depressurization rate still maintains 46% at a 20 PV water flow rate, indicating that its depressurization effect is remarkable and it has excellent erosion resistance

    Ultrathin Covalent Organic Framework Nanosheets/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen

    No full text
    Designable and ultrathin covalent organic framework nanosheets (CONs) with good photoelectric activity are promising candidates for the construction of photoelectrochemical (PEC) biosensors for the detection of low-abundance biological substrates. However, achieving highly sensitive PEC properties by using emerging covalent organic framework nanosheets (CONs) remains a great challenge due to the polymeric nature and poor photoelectric activity of CONs. Herein, we report for the first time the preparation of novel composites and their PEC sensing properties by electrostatic self-assembly of ultrathin CONs (called TTPA-CONs) with Ti3C2Tx. The prepared TTPA-CONs/Ti3C2Tx composites can be used as photocathodes for PEC detection of prostate-specific antigen (PSA) with high sensitivity, low detection limit, and good stability. This work not only expands the application of CONs but also opens new avenues for the development of efficient PEC sensing platforms

    Law and Mechanism Study on Salt Resistance of Nonionic Surfactant (Alkyl Glycoside) Foam

    No full text
    In this paper, the effects of three cations, Ca2+, Mg2+, and Na+, on the stability of APG foams were investigated experimentally. The results show that cations can slow down the process of liquid drainage and coarsening of APG foam, which is beneficial to the stability of the foam. The salt resistance mechanism of nonionic surfactant (APG) was investigated by molecular dynamics simulation and compared with that of anionic surfactant (SDS) foam. Firstly, the distribution characteristics of cations in APG foam and SDS foam were explored. It was found that the cations in the APG foam were mainly distributed in the water layer away from the head groups, and the cations in the SDS foam were more likely to appear near the head groups. Then, the hydration of the head groups and the cation was investigated. The results show that cations have little effect on the number of water molecules in the hydration layer of APG head groups but will reduce the diffusion capacity of water molecules and increase the water retention capacity of the foam film, thereby enhancing the foam stability. The addition of cations will reduce the water retention capacity of the SDS foam film. In addition, the behavior of surfactant head and tail groups was also analyzed. It was found that the cations made the head groups of APG more inclined to be aligned perpendicular to the liquid interface, and the tail groups were more inclined to realize a cross-arrangement and cover the gas–liquid interface. This can not only slow down the gas phase mass transfer process of the adjacent foam and slow down the coarsening process of the foam but also increase the viscoelasticity and anti-disturbance ability of the foam film. The cations will weaken the staggered arrangement of the SDS molecular tail groups, and at the same time, will cause the SDS molecules to aggregate, which greatly reduces the stability of the foam

    Characterization of Ovarian Lipid Composition in the Largemouth Bronze Gudgeon (<i>Coreius guichenoti</i>) at Different Development Stages

    No full text
    The largemouth bronze gudgeon has experienced a sharp drop in its natural population and has been listed as a protected species in China. The frequent occurrence of ovarian development obstruction from stage III to IV has restricted artificial propagation. Due to lipids being a crucial factor for ovarian development, this study aimed to characterize the ovarian lipid profile at different development stages in largemouth bronze gudgeons. Using UPLC-MS/MS, 1353 lipids belonging to 46 subclasses were identified in ovaries from largemouth bronze gudgeons. The results showed that glycerolipids and glycerophospholipids were the dominant lipids during ovarian development. Lysophosphatidyl choline (LPC), phosphatidyl choline (PC), and phosphatidylserine (PS), as the crucial phospholipids for ovarian development, were significantly reduced from stage III to IV. This may be the main cause of ovarian development obstruction for largemouth bronze gudgeons. Meanwhile, the enrichment analysis revealed that lipid metabolites are present at different ovarian development stages. Glycerophospholipid, linoleic acid, and linolenic acid metabolism were significantly enriched at stage IV. This study shows the complete picture of the ovarian lipid composition profile, and also discovers that phospholipids may be the limiting factor for ovarian development; these findings offer a theoretical basis for the artificial propagation and release of the largemouth bronze gudgeon
    corecore