11 research outputs found

    The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes

    Get PDF
    Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level

    Rapid quantification of insulin in human milk by immunoassay

    No full text
    Human milk (HM) contains numerous non-nutritive bioactive factors, amongst which the peptide hormone insulin. HM insulin has been suggested to accelerate intestinal maturation, thereby promoting feeding tolerance. Therefore, recombinant human insulin for enteral administration has been developed which might serve as supplement to HM or formula for preterm infants. However, the natural course of the HM insulin concentration directly following delivery is unknown, which hampers the development of dosage schedules in clinical trials. The aim of this study was to validate a method for insulin determination in small volumes of HM, and to assess the stability of HM insulin. The results showed that the HM insulin concentration can be measured rapidly and reliably by using an automated immunoassay. In addition, HM insulin is stable at 4 °C for at least 72 h, at room temperature for a maximum of 12 h, at −20 °C for at least 2.5 years, and during at least five freeze-thaw cycles

    Chronic early-life stress alters developmental and adult neurogenesis and impairs cognitive function in mice

    No full text
    Early-life stress (ES) increases vulnerability to psychopathology and impairs cognition in adulthood. These ES-induced deficits are associated with lasting changes in hippocampal plasticity. Detailed information on the neurobiological basis, the onset and progression of such changes and their sex-specificity is currently lacking but is required to tailor specific intervention strategies. Here we use a chronic ES mouse model based on limited nesting and bedding material from postnatal day (P) 2-9 to investigate; 1) if ES leads to impairments in hippocampus-dependent cognitive function in adulthood, and 2) if these alterations are paralleled by changes in developmental and/or adult hippocampal neurogenesis. ES increased developmental neurogenesis (proliferation and differentiation) in the dentate gyrus (DG) at P9, and the number of immature (NeurD1+) cells migrating postnatally from the secondary dentate matrix, indicating prompt changes in DG structure in both sexes. ES lastingly reduced DG volume and the long-term survival of developmentally born neurons in both sexes at P150. In adult male mice only, ES reduced survival of adult-born neurons (BrdU/NeuN+ cells), while proliferation (Ki67+) and differentiation (DCX+) were unaffected. These changes correlated with impaired performance in all learning and memory tasks used here. In contrast, in female mice, despite early alterations in developmental neurogenesis, no lasting changes were present in adult neurogenesis after ES and the cognitive impairments were less prominent and only apparent in some cognitive tasks. We further show that, although neurogenesis and cognition positively correlate, only the hippocampus-dependent functions depend on changes in neurogenesis, whereas cognitive functions that are not exclusively hippocampus-dependent do not. This study indicates that chronic ES has lasting consequences on hippocampal structure and function in mice and suggests that male mice are more susceptible to ES than females. Unraveling the mechanisms that underlie the persistent ES-induced effects may have clinical implications for treatments to counteract ES-induced deficits

    Accurate measurement of the essential micronutrients methionine, homocysteine, vitamins B6, B12, B9 and their metabolites in plasma, brain and maternal milk of mice using LC/MS ion trap analysis

    No full text
    Methionine, homocysteine, vitamins B6, B12, B9, and their metabolites are crucial co-factors and substrates for many basic biological pathways including one-carbon metabolism, and they are particularly important for brain function and development and epigenetic mechanisms. These are essential nutrients that cannot be synthesized endogenously and thus need to be taken in via diet. A novel method was developed that enables simultaneous assessment of the exact concentrations of these essential micronutrients in various matrices, including maternal milk, plasma, and brain of neonatal mice. The protocol for analysis of these components in the various matrices consists of a cleanup step (i.e. lipid extraction followed by protein precipitation) combined with a liquid chromatography mass spectrometry (LC/MS) ion trap method with high sensitivity and selectivity (SRM mode). This novel method enables the measurement of these essential nutrients with good recoveries (69-117%), and high intra-day ( <10%) and high intra-day precision (defined as <15% for compounds with an isotopologue and <20% for compounds without an isotopologue as internal standard) in plasma, maternal milk, and brain of mice at low and high levels. In addition, lower limits of quantitation (LOQ) were determined for the various matrices in the range for methionine (700-2000nmol/L), homocysteine (280-460-nmol/L), vitamins B6 (5-230nmol/L), B12 (7-11nmol/L), B9 (20-30nmol/L). Degradation of vitamins and oxidation of homocysteine is limited to a minimum, and only small sample volumes (30μL plasma, 20mg brain and maternal milk) are needed for simultaneous measurement. This method can help to understand how these nutrients are transferred from mother to offspring via maternal milk, as well as how these nutrients are absorbed by the offspring and eventually taken up in various tissues amongst the brain in preclinical and clinical research settings. Therefore the method can help to explore critical periods in lactating mothers and developing offsprin

    Circadian variation in human milk composition, a systematic review

    No full text
    Background: Breastfeeding is considered the most optimal mode of feeding for neonates and mothers. Human milk changes over the course of lactation in order to perfectly suit the infant’s nutritional and immunological needs. Its composition also varies throughout the day. Circadian fluctuations in some bioactive components are suggested to transfer chronobiological information from mother to child to assist the development of the biological clock. This review aims to give a complete overview of studies examining human milk components found to exhibit circadian variation in their concentration. Methods: We included studies assessing the concentration of a specific human milk component more than once in 24 h. Study characteristics, including gestational age, lactational stage, sampling strategy, analytical method, and outcome were extracted. Methodological quality was graded using a modified Newcastle-Ottawa Scale (NOS). Results: A total of 83 reports assessing the circadian variation in the concentration of 71 human milk components were included. Heterogeneity among studies was high. The methodological quality varied widely. Significant circadian variation is found in tryptophan, fats, triacylglycerol, cholesterol, iron, melatonin, cortisol, and cortisone. This may play a role in the child’s growth and development in terms of the biological clock

    Circadian Variation in Human Milk Composition, a Systematic Review

    No full text
    BACKGROUND: Breastfeeding is considered the most optimal mode of feeding for neonates and mothers. Human milk changes over the course of lactation in order to perfectly suit the infant's nutritional and immunological needs. Its composition also varies throughout the day. Circadian fluctuations in some bioactive components are suggested to transfer chronobiological information from mother to child to assist the development of the biological clock. This review aims to give a complete overview of studies examining human milk components found to exhibit circadian variation in their concentration. METHODS: We included studies assessing the concentration of a specific human milk component more than once in 24 h. Study characteristics, including gestational age, lactational stage, sampling strategy, analytical method, and outcome were extracted. Methodological quality was graded using a modified Newcastle-Ottawa Scale (NOS). RESULTS: A total of 83 reports assessing the circadian variation in the concentration of 71 human milk components were included. Heterogeneity among studies was high. The methodological quality varied widely. Significant circadian variation is found in tryptophan, fats, triacylglycerol, cholesterol, iron, melatonin, cortisol, and cortisone. This may play a role in the child's growth and development in terms of the biological clock

    Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at?

    No full text
    Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies

    Increasing availability of omega-3 fatty acid in the early-life diet prevents the early-life stress-induced cognitive impairments without affecting metabolic alterations

    Get PDF
    Exposure to early-life stress (ES) is associated with cognitive and metabolic deficits in adulthood. The role of early nutrition in programming these long-term effects is largely unknown. We focused on essential omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) and investigated whether ES affects central and peripheral FA profiles, as well as if and how an early diet with increased availability of omega-3 LCPUFA (via lowering omega-6/omega-3 ratio) protects against ES-induced impairments. ES exposure [limited nesting and bedding paradigm from postnatal day (P)2 to P9] altered central and peripheral FA profiles in mice. An early diet with low omega-6/omega-3 ratio from P2 to P42 notably prevented the ES-induced cognitive impairments, and the alterations in hippocampal newborn cell survival and in CD68(+) microglia, without affecting the ES-induced metabolic alterations. Other markers for hippocampal plasticity, apoptosis, and maternal care were unaffected by ES or diet. Our findings highlight the importance of early dietary lipid quality for later cognition in ES-exposed populations

    Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice

    No full text
    Early-life stress (ES) increases the vulnerability to develop psychopathologies and cognitive decline in adulthood. Interestingly, this is often comorbid with metabolic disorders, such as obesity. However, it is unclear whether ES leads to lasting metabolic changes and to what extent this is associated with the ES-induced cognitive impairments. Here, we used an established chronic ES mouse model (from postnatal day (P) 2 to P9) to investigate the short- and long-term effects of ES exposure on parameters of the adipose tissue and the leptin system (i.e. circulating levels and gene expression of leptin and its receptor) in both sexes. Immediately following ES, the offspring exhibited reductions in white adipose tissue (WAT) mass, plasma leptin levels and in leptin mRNA expression in WAT. Furthermore, ES exposure led to increased brown adipose tissue and browning of WAT, which was evident by a drastic increase in uncoupling protein 1 mRNA expression in the inguinal WAT at P9. Notably, the ES-induced reductions in WAT mass, plasma leptin and leptin expression in WAT were sustained into adulthood and were accompanied by changes in body fat distribution, such as a higher ratio between mesenteric WAT and other WATs. Interestingly, while ES exposure increased leptin receptor mRNA expression in the choroid plexus, it was unaltered in the hippocampus. This suggests an adaptation to maintain central leptin homeostasis following ES exposure. In addition, chronic ES exposure resulted in the well-established cognitive impairment in object recognition performance during adulthood, which correlated positively with reductions in WAT mass observed in male, but not in female mice. Finally, to assess if ES leads to a different metabolic phenotype in a moderate obesogenic environment, we measured body fat accumulation of control and ES-exposed mice in response to a moderate western-style diet (WSD) that was provided during adulthood. ES-exposed mice subjected to WSD exhibit a higher increase in adiposity when compared to controls, suggesting that ES exposure might result in a higher vulnerability to develop obesity in a moderate obesogenic environment. To conclude, chronic ES exposure alters parameters of the adipose tissue, leads to central adaptations in leptin regulation and results in higher fat accumulations when exposed to a WSD challenge later in life. A better understanding of these metabolic effects induced by ES might open up new avenues for therapeutic (e.g. nutritional) interventions. (C) 2016 Elsevier Ltd. All rights reserved
    corecore