22 research outputs found

    Carnivore Translocations and Conservation: Insights from Population Models and Field Data for Fishers (Martes pennanti)

    Get PDF
    Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in the Pacific states of the US. Our model predicts that the most important factor influencing successful re-establishment of a fisher population is the number of adult females reintroduced (provided some males are also released). Data from 38 translocations of fishers in North America, including 30 reintroductions, 5 augmentations and 3 introductions, show that the number of females released was, indeed, a good predictor of success but that the number of males released, geographic region and proximity of the source population to the release site were also important predictors. The contradiction between model and data regarding males may relate to the assumption in the model that all males are equally good breeders. We hypothesize that many males may need to be released to insure a sufficient number of good breeders are included, probably large males. Seventy-seven percent of reintroductions with known outcomes (success or failure) succeeded; all 5 augmentations succeeded; but none of the 3 introductions succeeded. Reintroductions were instrumental in reestablishing fisher populations within their historical range and expanding the range from its most-contracted state (43% of the historical range) to its current state (68% of the historical range). To increase the likelihood of translocation success, we recommend that managers: 1) release as many fishers as possible, 2) release more females than males (55–60% females) when possible, 3) release as many adults as possible, especially large males, 4) release fishers from a nearby source population, 5) conduct a formal feasibility assessment, and 6) develop a comprehensive implementation plan that includes an active monitoring program

    Hybrid Resiliency-Stressor Conceptual Framework for Informing Decision Support Tools and Addressing Environmental Injustice and Health Inequities

    No full text
    While structural factors may drive health inequities, certain health-promoting attributes of one’s “place” known as salutogens may further moderate the cumulative impacts of exposures to socio-environmental stressors that behave as pathogens. Understanding the synergistic relationship between socio-environmental stressors and resilience factors is a critical component in reducing health inequities; however, the catalyst for this concept relies on community-engaged research approaches to ultimately strengthen resiliency and promote health. Furthermore, this concept has not been fully integrated into environmental justice and cumulative risk assessment screening tools designed to identify geospatial variability in environmental factors that may be associated with health inequities. As a result, we propose a hybrid resiliency-stressor conceptual framework to inform the development of environmental justice and cumulative risk assessment screening tools that can detect environmental inequities and opportunities for resilience in vulnerable populations. We explore the relationship between actual exposures to socio-environmental stressors, perceptions of stressors, and one’s physiological and psychological stress response to environmental stimuli, which collectively may perpetuate health inequities by increasing allostatic load and initiating disease onset. This comprehensive framework expands the scope of existing screening tools to inform action-based solutions that rely on community-engaged research efforts to increase resiliency and promote positive health outcomes
    corecore