2 research outputs found

    Optimization of process parameters for slow pyrolysis of neem press seed cake for liquid and char production

    No full text
    Slow pyrolysis of neem press seed cake (NPSC) was carried out in a fixed bed batch reactor to study the effects of temperature, retention time, and nitrogen (N 2 ) flow rate on liquid and char yields. Response surface methodology (RSM) based on Box-Behnken design was used to determine the optimum operating conditions to maximize the liquid yield. The highest liquid yield of 52.1 wt% was obtained at 512.5 °C, after 60 min using 0.5 L/min N 2 flow rate. Scanning electron microscopy (SEM), elemental analysis, bomb calorimeter, Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction techniques and gas chromatography-mass spectrometry (GC-MS) were used to determine the physicochemical properties of NPSC and char, and chemical properties of liquid. GC-MS analysis showed that the bio-oil was rich in 9-octadecenamide, 2-propenyl decanoate, heptadecanenitrile, and oleanitrile. The higher heating value of the bio-oil and NPSC were 32.8 and 16.05 MJ/kg, respectively at 575 °C. The FT-IR results showed a decrease in the number of O-H (hydroxyl), C-H (alkanes), C=O (esters), -C-H (alkanes), and C-O (primary alcohol) groups in NPSC with increasing pyrolysis temperature
    corecore