2 research outputs found

    Multiresolution image registration for multimodal brain images and fusion for better neurosurgical planning

    No full text
    Background: Imaging modalities in medicine gives complementary information. Inadequacy in clinical information made single imaging modality insufficient. There is a need for computer-based system that permits rapid acquisition of digital medical images and performs multi-modality registration, segmentation and three-dimensional planning of minimally invasive neurosurgical procedures. In this regard proposed article presents multimodal brain image registration and fusion for better neurosurgical planning. Methods: In proposed work brain data is acquired from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) modalities. CT and MRI images are pre-processed and given for image registration. BSpline deformable registration and multiresolution image registration is performed on the CT and MRI sequence. CT is fixed image and MRI is moving image for registration. Later end result is fusion of CT and registered MRI sequences. Results: BSpline deformable registration is performed on the slices gave promising results but on the sequences noise have been introduced in the resultant image because of multimodal and multiresolution input images. Then multiresolution registration technique is performed on the CT and MRI sequence of the brain which gave promising results. Conclusion: The end resultant fused images are validated by the radiologists and mutual information measure is used to validate registration results. It is found that CT and MRI sequence with more number of slices gave promising results. Few cases with deformation during misregistrations recorded with low mutual information of about 0.3 and which is not acceptable and few recorded with 0.6 and above mutual information during registration gives promising results

    Channel Intensity and Edge-Based Estimation of Heart Rate via Smartphone Recordings

    No full text
    Smartphones, today, come equipped with a wide variety of sensors and high-speed processors that can capture, process, store, and communicate different types of data. Coupled with their ubiquity in recent years, these devices show potential as practical and portable healthcare monitors that are both cost-effective and accessible. To this end, this study focuses on examining the feasibility of smartphones in estimating the heart rate (HR), using video recordings of the users’ fingerprints. The proposed methodology involves two-stage processing that combines channel-intensity-based approaches (Channel-Intensity mode/Counter method) and a novel technique that relies on the spatial and temporal position of the recorded fingerprint edges (Edge-Detection mode). The dataset used here included 32 fingerprint video recordings taken from 6 subjects, using the rear camera of 2 smartphone models. Each video clip was first validated to determine whether it was suitable for Channel-Intensity mode or Edge-Detection mode, followed by further processing and heart rate estimation in the selected mode. The relative accuracy for recordings via the Edge-Detection mode was 93.04%, with a standard error of estimates (SEE) of 6.55 and Pearson’s correlation r > 0.91, while the Channel-Intensity mode showed a relative accuracy of 92.75%, with an SEE of 5.95 and a Pearson’s correlation r > 0.95. Further statistical analysis was also carried out using Pearson’s correlation test and the Bland–Altman method to verify the statistical significance of the results. The results thus show that the proposed methodology, through smartphones, is a potential alternative to existing technologies for monitoring a person’s heart rate
    corecore