14 research outputs found

    Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    Get PDF
    Objective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tumor lesion before and during therapy. Results: At baseline, mean BF and MRgluvaried among different tumor lesions, but mean Vdwas comparable in all lesions. After one course of chemotherapy, mean MRgludecreased in all lesions. Mean BF decreased in breast and node lesions and increased in bone lesions. Vddecreased in breast and nodes, but did not change in bone lesions. The MRglu/BF ratio decreased in breast and bone lesions and increased in node lesions. In patients with multiple tumor lesions BF and MRgluresponse could be very heterogeneous, even within similar types of metastases. BF and MRgluincreased in lesions of patients who experienced early disease progression or showed no response during clinical follow-up. Conclusion: BF and MRgluchanges separately give unique information on different aspects of tumor response to chemotherapy. Changes in BF and MRgluparameters can be remarkably heterogeneous in patients with multiple lesions

    Partial volume correction strategies for quantitative FDG PET in oncology

    Get PDF
    Purpose: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. Methods: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. Results: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Cl

    Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial

    Get PDF
    Background: Neoadjuvant chemoradiotherapy (nCRT) plus surgery is a standard treatment for locally advanced oesophageal cancer. With this treatment, 29% of patients have a pathologically complete response in the resection specimen. This provides the rationale for investigating an active surveillance approach. The aim of this study is to assess the (cost-)effectiveness of active surveillance vs. standard oesophagectomy after nCRT for oesophageal cancer. Methods: This is a phase-III multi-centre, stepped-wedge cluster randomised controlled trial. A total of 300 patients with clinically complete response (cCR, i.e. no local or disseminated disease proven by histology) after nCRT will be randomised to show non-inferiority of active surveillance to standard oesophagectomy (non-inferiority margin 15%, intra-correlation coefficient 0.02, power 80%, 2-sided α 0.05, 12% drop-out). Patients will undergo a first clinical response evaluation (CRE-I) 4-6 weeks after nCRT, consisting of endoscopy with bite-on-bite biopsies of the primary tumour site and other suspected lesions. Clinically complete responders will undergo a second CRE (CRE-II), 6-8 weeks after CRE-I. CRE-II will include 18F-FDG-PET-CT, followed by endoscopy with bite-on-bite biopsies and ultra-endosonography plus fine needle aspiration of suspected lymph nodes and/or PET- positive lesions. Patients with cCR at CRE-II will be assigned to oesophagectomy (first phase) or active surveillance (second phase of the study). The duration of the first phase is determined randomly over the 12 centres, i.e., stepped-wedge cluster design. Patients in the active surveillance arm will undergo diagnostic evaluations similar to CRE-II at 6/9/12/16/20/24/30/36/48 and 60 months after nCRT. In this arm, oesophagectomy will be offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant dissemination. The main study parameter is overall survival; secondary endpoints include percentage of patients who do not undergo surgery, quality of life, clinical irresectability (cT4b) rate, radical resection rate, postoperative complications, progression-free survival, distant dissemination rate, and cost-effectiveness. We hypothesise that active surveillance leads to non-inferior survival, improved quality of life and a reduction in costs, compared to standard oesophagectomy. Discussion: If active surveillance and surgery as needed after nCRT leads to non-inferior survival compared to standard oesophagectomy, this organ-sparing approach can be implemented as a standard of care

    Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study

    No full text
    Semiquantitative standard uptake values (SUVs) are used for tumor diagnosis and response monitoring. However, the accuracy of the SUV and the accuracy of relative change during treatment are not well documented. Therefore, an experimental and simulation study was performed to determine the effects of noise, image resolution, and region-of-interest (ROI) definition on the accuracy of SUVs. Methods: Experiments and simulations are based on thorax phantoms with tumors of 10-, 15-, 20-, and 30-mm diameter and background ratios (TBRs) of 2, 4, and 8. For the simulation study, sinograms were generated by forward projection of the phantoms. For each phantom, 50 sinograms were generated at 3 noise levels. All sinograms were reconstructed using ordered-subset expectation maximization (OSEM) with 2 iterations and 16 subsets, with or without a 6-mm gaussian filter. For each tumor, the maximum pixel value and the average of a 50%, a 70%, and an adaptive isocontour threshold ROI were derived as well as with an ROI of 15 x 15 mm. The accuracy of SUVs was assessed using the average of 50 ROI values. Treatment response was simulated by varying the tumor size or the TBR. Results: For all situations, a strong correlation was found between maximum and isocontour-based ROI values resulting in similar dependencies on image resolution and noise of all studied SUV measures. A strong variation with tumor size of ≥50% was found for all SUV values. For non-smoothed data with high noise levels this variation was primarily due to noise, whereas for smoothed data with low noise levels partial-volume effects were most important. In general, SUVs showed under- and overestimations of ≥50% and depended on all parameters studied. However, SUV ratios, used for response monitoring, were only slightly dependent of ROI definition but were still affected by noise and resolution. Conclusion: The poor accuracy of the SUV under various conditions may hamper its use for diagnosis, especially in multicenter trials. SUV ratios used to measure response to treatment, however, are less dependent on noise, image resolution, and ROI definition. Therefore, the SUV might be more suitable for response-monitoring purposes

    Erratum: Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial (European Journal of Nuclear Medicine and Molecular Imaging (2005) 32 (294-301) DOI: http://dx.doi.org/10.1007/s00259-004-1566-1)

    No full text
    Purpose: Quantitative measurement of tracer uptake in a tumour can be influenced by a number of factors, including the method of defining regions of interest (ROIs) and the reconstruction parameters used. The main purpose of this study was to determine the effects of different ROI methods on quantitative outcome, using two reconstruction methods and the standard uptake value (SUV) as a simple quantitative measure of FDG uptake. Methods: Four commonly used methods of ROI definition (manual placement, fixed dimensions, threshold based and maximum pixel value) were used to calculate SUV (SU

    Prevalence and Progression of Pancreatic Cystic Precursor Lesions Differ Between Groups at High Risk of Developing Pancreatic Cancer

    No full text
    Objectives: The aim of this study was to compare the prevalence of cystic pancreatic lesions and their natural behavior in 2 distinct high-risk groups for developing pancreatic ductal adenocarcinoma (PDAC): (1) carriers of a mutation that predisposes to PDAC and (2) individuals without a known gene mutation but with a family history of PDAC (familial pancreatic cancer [FPC]). Methods: Pancreatic surveillance by annual magnetic resonance imaging and endoscopic ultrasound was performed in individuals with an estimated lifetime risk of developing PDAC of 10% or greater. Progression of a lesion was defined as growth 4 mm or greater or the development of worrisome features. Results: We included 186 individuals: 98 mutation carriers and 88 FPC individuals (mean follow-up, 51 months). Individuals with FPC were significantly more likely than mutation carriers to have a pancreatic cyst 10 mmor greater (16% vs 5%, P = 0.045). Pancreatic cysts detected in mutation carriers, however, were significantly more likely to progress than those in FPC individuals (16% vs 2%, P = 0.050). Conclusions: This study provides evidence that the prevalence and growth characteristics of pancreatic cysts differ between distinct high-risk groups: individuals with FPC have a higher prevalence of pancreatic cysts 10 mm or greater, whereas cysts in mutation carriers are more likely to progress. These observations may help to develop more optimally tailored surveillance strategies in specific high-risk populations
    corecore