54 research outputs found

    Postattachment Neutralization of Papillomaviruses by Monoclonal and Polyclonal Antibodies

    Get PDF
    AbstractPostattachment neutralization of papillomaviruses (PVs) was analyzed in three PV-infectivity models: (i) the BPV-1-induced focus-forming assay using C127 cells; (ii) in vitro abortive infection of rabbit RK-13 and Sf1Ep cells with CRPV; and (iii) HPV11-induced morphological transformation of human foreskin chips in the athymic mouse xenograft system. In each assay system, aliquots of infectious virus were added to the appropriate target cells and incubated at 37Β°, followed at various postinfection time intervals with neutralizing monoclonal antibodies (N-MAbs) that target surface conformational epitopes. In all three model systems, the N-MAbs were able to neutralize PV infection when added as late as 8 hr after addition of infectious PV to host cells. These results imply that papillomaviruses attach to but do not penetrate inside host cells for a significant period of time and that the bound virus is thus still susceptible to neutralization by neutralizing antibodies

    Podofilox-Induced Regression of Shope Papillomas May Be Independent of Host Immunity

    Get PDF
    We tested the hypothesis that infiltrating leukocytes might contribute to papilloma destruction following podofilox treatment. New Zealand White (NZW) rabbits were inoculated with cottontail rabbit papillomavirus (CRPV) onto abraded areas of the dorsal skin. At 21 d after viral inoculation, 5.0% podofilox solution was applied to some papillomas, whereas others were used as controls. Three rabbits were sacrificed at each of three different periods after treatment initiation (1, 4, and 7 d). Four monoclonal antibodies (MoAbs), RG-16 (for B cells), L11/135 (specific for T cells), 2C4 (specific for class II antigen), and Ki67 (specific for proliferating cells), were used in an immunohistochemical study. All positive cells and total cells in the field were counted with an ocular grid. After 1 d of treatment, proliferation of papilloma cells was strongly suppressed in treated papillomas, but leukocytic infiltration was not altered. At 4 d and 7 d of treatment, there were substantial increases (about two to three times) in the numbers of B and T cells and class II – expressing leukocytes. The upper layers of the papillomas were highly necrotic and cell proliferation was absent in an layers. These data support the view that podofilox has a direct toxic effect on papilloma tissue. Leukocyte infiltration is not strongly associated with papilloma tissue and may not contribute to papilloma destruction

    Long-peptide therapeutic vaccination against CRPV-induced papillomas in HLA-A2.1 transgenic rabbits

    Get PDF
    AbstractLong peptide immunization is a promising strategy to clear established tumors. In the current study, we investigated the therapeutic effect of a naturally existing long peptide that contained two HLA-A2.1 restricted epitopes (CRPVE1/149–157 and CRPVE1/161–169) from cottontail rabbit papillomavirus (CRPV) E1 using our CRPV/HLA-A2.1 transgenic rabbit model. A universal Tetanus Toxin helper motif (TT helper) was tagged at either the N-terminus or the carboxyl-terminus of this long peptide and designated as TT-E1 peptide and E1 peptide-TT, respectively. Four groups of HLA-A2.1 transgenic rabbits were infected with wild type CRPV DNA. Three weeks post-infection, the rabbits were immunized four times with TT-E1 peptide, E1 peptide only, E1 peptide-TT or TT-control peptide with two-week intervals between immunizations. Tumor outgrowth was monitored and recorded weekly. After the third booster immunization, tumors on two of the four E1 peptide-TT immunized rabbits began to shrink. One animal from this group was free of tumors at the termination of the study. The mean papilloma size of E1 peptide-TT immunized rabbits was significantly smaller when compared with that of the three other groups (P<0.05, one way ANOVA analysis). It is interesting that E1 peptide-TT vaccination not only stimulated stronger T cell mediated immune responses but also stronger antibody generations. We conclude that the location of a TT helper motif tagged at the long peptide vaccine is critical for the outcome of therapeutic responses to persistent tumors in our HLA-A2.1 transgenic rabbit model

    Mouse Papillomavirus L1 and L2 Are Dispensable for Viral Infection and Persistence at Both Cutaneous and Mucosal Tissues.

    Get PDF
    Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo

    CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

    Get PDF
    Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes

    Amino Acid Residues in the Carboxy-Terminal Region of Cottontail Rabbit Papillomavirus E6 Influence Spontaneous Regression of Cutaneous Papillomas

    No full text
    Previous studies have identified two different strains of cottontail rabbit papillomavirus (CRPV) that differ by approximately 5% in base pair sequence and that perform quite differently when used to challenge New Zealand White (NZW) rabbit skin. One strain caused persistent lesions (progressor strain), and the other induced papillomas that spontaneously regressed (regressor strain) at high frequencies (J. Salmon, M. Nonnenmacher, S. Caze, P. Flamant, O. Croissant, G. Orth, and F. Breitburd, J. Virol. 74:10766-10777, 2000; J. Salmon, N. Ramoz, P. Cassonnet, G. Orth, and F. Breitburd, Virology 235:228-234, 1997). We generated a panel of CRPV genomes that contained chimeric and mutant progressor and regressor strain E6 genes and assessed the outcome upon infection of both outbred and EIII/JC inbred NZW rabbits. The carboxy-terminal 77-amino-acid region of the regressor CRPV strain E6, which contained 15 amino acid residues that are different from those of the equivalent region of the persistent CRPV strain E6, played a dominant role in the conversion of the persistent CRPV strain to one showing high rates of spontaneous regressions. In addition, a single amino acid change (G252E) in the E6 protein of the CRPV progressor strain led to high frequencies of spontaneous regressions in inbred rabbits. These observations imply that small changes in the amino acid sequences of papillomavirus proteins can dramatically impact the outcome of natural host immune responses to these viral infections. The data imply that intrastrain differences between separate isolates of a single papillomavirus type (such as human papillomavirus type 16) may contribute to a collective variability in host immune responses in outbred human populations

    Intracutaneous DNA Vaccination with the E8 Gene of Cottontail Rabbit Papillomavirus Induces Protective Immunity against Virus Challenge in Rabbits

    No full text
    The cottontail rabbit papillomavirus (CRPV)-rabbit model has been used in several studies for testing prophylactic and therapeutic papillomavirus vaccines. Earlier observations had shown that the CRPV nonstructural genes E1, E2, and E6 induced strong to partial protective immunity against CRPV infection. In this study, we found that CRPV E8 immunization eliminated virus-induced papillomas in EIII/JC inbred rabbits (100%) and provided partial protection (55%) against virus challenge in outbred New Zealand White rabbits. CRPV-E8 is a small open reading frame, coding for a 50-amino-acid protein, that is colinear with the CRPV E6 gene and has features similar to those of the bovine papillomavirus and human papillomavirus E5 genes. Papillomas that grew on E8-vaccinated outbred rabbits were significantly smaller than those on vector-vaccinated rabbits (P < 0.01; t test). Delayed-type hypersensitivity skin tests showed that some of the E8-vaccinated rabbits had positive responses to E8-specific peptides

    The Mouse Papillomavirus Infection Model

    No full text
    The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression
    • …
    corecore