56 research outputs found

    Microgravity triggers ferroptosis and accelerates senescence in the MG-63 cell model of osteoblastic cells.

    Full text link
    peer reviewedIn space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.Cytoskeleto

    Matrix metalloproteinase 12 silencing: A therapeutic approach to treat pathological lung tissue remodeling?

    Full text link
    peer reviewedAmong the large matrix metalloproteinases (MMPs) family, MMP-12, also referred to as macrophage elastase, plays a significant role in chronic pulmonary pathologies characterized by an intense tissue remodeling such as asthma and COPD. This review will summarize knowledge about MMP-12 structure, functions and mechanisms of activation and regulation, including potential MMP-12 modulation by microRNA. As MMP-12 is involved in many tissue remodeling diseases, efforts have been made to develop specific synthetic inhibitors. However, at this time, very few chemical inhibitors have proved to be efficient and specific to a particular MMP. The relevance of silencing MMP-12 by RNA interference is highlighted. The specificity of this approach using siRNA or shRNA and the strategies to deliver these molecules in the lung are discussed

    Inhibitory Effects of Proanthocyanidins from Ribes Nigrum Leaves on Carrageenin Acute Inflammatory Reactions Induced in Rats

    Get PDF
    BACKGROUND: The anti-inflammatory effects of proanthocyanidins (PACs), isolated from blackcurrant (Ribes nigrum L.) leaves, were analysed using carrageenin-induced paw oedema and carrageenin-induced pleurisy in rats. RESULTS: Pretreatment of the animals with PACs (10, 30, 60 and 100 mg/kg, i.p.) reduced paw oedema induced by carrageenin in a dose and time-dependent manner. PACs also inhibited dose-dependently carrageenin-induced pleurisy in rats. They reduced (A) lung injury, (B) pleural exudate formation, (C) polymorphonuclear cell infiltration, (D) pleural exudate levels of TNF-alpha, IL-1beta and CINC-1 but did not affect IL-6 and IL-10 levels. They reduced (E) pleural exudate levels of nitrite/nitrate (NOx). In indomethacin treated rats, the volume of pleural exudate was low, its content in leukocytes and its contents in TNF-alpha, IL-1beta, IL-6 and IL-10 but not in NOx were reduced. These data suggest that the anti-inflammatory properties of PACs are achieved through a different pattern from those of indomethacin. CONCLUSION: These results suggest that the main mechanism of the anti-inflammatory effect of PACs mainly lies in an interference with the migration of the leukocytes. Moreover, PACs inhibited in vivo nitric oxide release
    • …
    corecore