16 research outputs found

    Carbon Sequestration In Alaska's Boreal Forest: Planning For Resilience In A Changing Landscape

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006Northern ecosystems and those who rely upon them are facing a time of unprecedented rapid change. Global boreal forests will play an important role in the feedback loop between climate, ecosystems, and society. In this thesis, I examine forest carbon dynamics and the potential for carbon management in Interior boreal Alaska in three distinct frameworks, then analyze my results in the context of social-ecological resilience. In Chapter 1, I analyze comparative historical trends and current regulatory frameworks governing the use and management of boreal forests in Russia, Sweden, Canada, and Alaska, and assess indicators of socio-ecological sustainability in these regions. I conclude that low population density, limited fire suppression, and restricted economic expansion in Interior Alaska have resulted in a 21st-century landscape with less compromised human-ecosystem interactions than other regions. Relative wealth and a strong regulatory framework put Alaska in a position to manage for long-term objectives such as carbon sequestration. In Chapter 2, I model the landscape-level ecological possibilities for sequestration under three different climate scenarios and associated changes in fire and forest growth. My results indicate that Interior Alaska could act as either a weak carbon source or as a weak sink in the next hundred years, and that management for carbon credits via fire suppression would be inadvisable, given the associated uncertainty and risks. In Chapter 3, I perform a social, ecological, and economic analysis of the feasibility of switching from fossil fuels to wood energy in Interior Alaska villages. I demonstrate that this is a viable option with the potential benefits of providing lower-cost power, creating local employment, reducing the risk of catastrophic wildfire near human habitation, and earning marketable carbon credits. Finally, in Chapter 4, I assess how each of the above factors may impact social-ecological resilience. My results show some system characteristics that tend to bolster resilience and others that tend to increase vulnerability. I argue that in order to reduce vulnerability, management goals for Alaska's boreal forest must be long-term, flexible, cooperative, and locally integrated

    Go play outside! Tips, tricks, and tales from the trails

    No full text
    During my thirteen years of Official Parent Experience, I've been asked some variant of this question a surprising number of times -- by new parents, soon-to-be-parents, and not-sure-if-we-want-to-be-parents. Free-spirited young adults seem genuinely worried that if they take on the role of "mom" or "dad" they will be locked forever in a minivan with dark-tinted windows. "Will we still be able to enjoy the great outdoors? The wild places? The adventures?" I can't claim to know everyone's answer, but I do know my own. It's long and complicated, and is covered in myriad ways in this book. It is also short: yes.--Provided by publisher.Age Sub-Zero: Planning for Kids -- Age 0: Precious Cargo -- Age 1-2: Large Opinions, Small Vocabularies -- Age 3-4: Short Legs, Short Attention Spans -- Ages 5-6: We Can Do It! -- Ages 7-9: We Want a Vote in This -- Age 10 and Up: Hey, Wait for the Grownups

    Climate Change, Farming, and Gardening in Alaska: Cultivating Opportunities

    No full text
    Ongoing climate change and associated food security concerns are pressing issues globally, and are of particular concern in the far north where warming is accelerated and markets are remote. The objective of this research was to model current and projected climate conditions pertinent to gardeners and farmers in Alaska. Research commenced with information-sharing between local agriculturalists and climate modelers to determine primary questions, available data, and effective strategies. Four variables were selected: summer season length, growing degree days, temperature of the coldest winter day, and plant hardiness zone. In addition, peonies were selected as a case study. Each variable was modeled using regional projected climate data downscaled using the delta method, followed by extraction of key variables (e.g., mean coldest winter day for a given decade). An online interface was developed to allow diverse users to access, manipulate, view, download, and understand the data. Interpretive text and a summary of the case study explained all of the methods and outcomes. The results showed marked projected increases in summer season length and growing degree days coupled with seasonal shifts and warmer winter temperatures, suggesting that agriculture in Alaska is undergoing and will continue to undergo profound change. This presents opportunities and challenges for farmers and gardeners

    Climate Change, Farming, and Gardening in Alaska: Cultivating Opportunities

    No full text
    Ongoing climate change and associated food security concerns are pressing issues globally, and are of particular concern in the far north where warming is accelerated and markets are remote. The objective of this research was to model current and projected climate conditions pertinent to gardeners and farmers in Alaska. Research commenced with information-sharing between local agriculturalists and climate modelers to determine primary questions, available data, and effective strategies. Four variables were selected: summer season length, growing degree days, temperature of the coldest winter day, and plant hardiness zone. In addition, peonies were selected as a case study. Each variable was modeled using regional projected climate data downscaled using the delta method, followed by extraction of key variables (e.g., mean coldest winter day for a given decade). An online interface was developed to allow diverse users to access, manipulate, view, download, and understand the data. Interpretive text and a summary of the case study explained all of the methods and outcomes. The results showed marked projected increases in summer season length and growing degree days coupled with seasonal shifts and warmer winter temperatures, suggesting that agriculture in Alaska is undergoing and will continue to undergo profound change. This presents opportunities and challenges for farmers and gardeners

    Parks, people, and change: the importance of multistakeholder engagement in adaptation planning for conserved areas

    No full text
    Climate change challenges the traditional goals and conservation strategies of protected areas, necessitating adaptation to changing conditions. Denali National Park and Preserve (Denali) in south central Alaska, USA, is a vast landscape that is responding to climate change in ways that will impact both ecological resources and local communities. Local observations help to inform understanding of climate change and adaptation planning, but whose knowledge is most important to consider? For this project we interviewed long-term Denali staff, scientists, subsistence community members, bus drivers, and business owners to assess what types of observations each can contribute, how climate change is impacting each, and what they think the National Park Service should do to adapt. The project shows that each type of long-term observer has different types of observations, but that those who depend more directly on natural resources for their livelihoods have more and different observations than those who do not. These findings suggest that engaging multiple groups of stakeholders who interact with the park in distinct ways adds substantially to the information provided by Denali staff and scientists and offers a broader foundation for adaptation planning. It also suggests that traditional protected area paradigms that fail to learn from and foster appropriate engagement of people may be maladaptive in the context of climate change

    Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    No full text
    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska
    corecore