3 research outputs found

    Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms

    Get PDF
    Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism. mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation.Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state

    Measurement of Hemostatic Factors in EDTA Plasma

    No full text

    Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway

    No full text
    The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particulate matter might accelerate thrombosis. We found that mice treated with a dose of well characterized particulate matter of less than 10 μM in diameter exhibited a shortened bleeding time, decreased prothrombin and partial thromboplastin times (decreased plasma clotting times), increased levels of fibrinogen, and increased activity of factor II, VIII, and X. This prothrombotic tendency was associated with increased generation of intravascular thrombin, an acceleration of arterial thrombosis, and an increase in bronchoalveolar fluid concentration of the prothrombotic cytokine IL-6. Knockout mice lacking IL-6 were protected against particulate matter–induced intravascular thrombin formation and the acceleration of arterial thrombosis. Depletion of macrophages by the intratracheal administration of liposomal clodronate attenuated particulate matter–induced IL-6 production and the resultant prothrombotic tendency. Our findings suggest that exposure to particulate matter triggers IL-6 production by alveolar macrophages, resulting in reduced clotting times, intravascular thrombin formation, and accelerated arterial thrombosis. These results provide a potential mechanism linking ambient particulate matter exposure and thrombotic events
    corecore