1,452 research outputs found
Increased oral lichen planus in a chronic hepatitis patient associated with elevated transaminase levels before and after interferon/ribavirin therapy
Background/purposeOral lichen planus (OLP) is the most frequent oral lesion found in patients with hepatitis C virus (HCV) infection. The aims of this study were to investigate the prevalence of OLP among chronic hepatitis C patients, to clarify the role of HCV in the pathogenesis of OLP, and to assess its relationship to transaminase levels.Materials and methodsTwo groups of subjects were studied; 277 hepatitis C patients were examined for OLP (Group 1) and 5273 outpatients seeking dental care within 1 year were used as a control (Group 2) to determine the prevalence of OLP in the general population. The dental and hepatic records were collected and analyzed.ResultsThe prevalences of OLP were 4.7% (n = 13) in Group 1 and 2.0% (n = 104) in Group 2 and significantly differed (P = 0.002). All 13 OLP cases occurred in hepatitis C patients who had experienced elevated alanine transaminase levels of > 80 IU/L within the 2 previous years, regardless of whether they were treated with interferon-ribavirin combination therapy or not. There was a strong association between elevated transaminase levels and the development of HCV-related OLP lesions (P = 0.014). Of the 13 OLP patients, two were in the group with a sustained virologic response (SVR) to HCV therapy, two were in the group without an SVR, and nine were in the non-therapy group. The incidence of OLP in hepatitis C patients did not significantly differ between those who showed an SVR to HCV therapy and those who did not respond or did not receive therapy (P = 0.560).ConclusionWe concluded that: (1) elevation of transaminase levels is associated with the detection of HCV-related OLP, and (2) HCV-related OLP can remain unchanged for years after an SVR to HCV therapy. The findings revealed that the role of HCV in OLP pathogenesis is due to host factors induced by HCV rather than a direct cytopathic effect of HCV
Tetraarsenic Hexoxide Induces Beclin-1-Induced Autophagic Cell Death as well as Caspase-Dependent Apoptosis in U937 Human Leukemic Cells
Tetraarsenic hexaoxide (As4O6) has been used in Korean folk remedy for the treatment of cancer since the late 1980s, and arsenic trioxide (As2O3) is currently used as a chemotherapeutic agent. However, evidence suggests that As4O6-induced cell death pathway was different from that of As2O3. Besides, the anticancer effects and mechanisms of As4O6 are not fully understood. Therefore, we investigated the anticancer activities of As4O6 on apoptosis and autophagy in U937 human leukemic cells. The growth of U937 cells was inhibited by As4O6 treatment in a dose- and a time-dependent manner, and IC50 for As4O6 was less than 2 μM. As4O6 induced caspase-dependent apoptosis and Beclin-1-induced autophagy, both of which were significantly attenuated by Bcl-2 augmentation and N-acetylcysteine (NAC) treatment. This study suggests that As4O6 should induce Beclin-1-induced autophagic cell death as well as caspase-dependent apoptosis and that it might be a promising agent for the treatment of leukemia
MeCP2 binding to DNA depends upon hydration at methyl-CpG
MeCP2 is an essential transcriptional repressor that mediates gene silencing through binding to methylated DNA. Binding specificity has been thought to depend on hydrophobic interactions between cytosine methyl groups and a hydrophobic patch within the methyl-CpG-binding domain (MBD). X-ray analysis of a methylated DNA-MBD cocrystal reveals, however, that the methyl groups make contact with a predominantly hydrophilic surface that includes tightly bound water molecules. This suggests that MeCP2 recognizes hydration of the major groove of methylated DNA rather than cytosine methylation per se. The MeCP2-DNA complex also identifies a unique structural role for T158, the residue most commonly mutated in Rett syndrome
Recommended from our members
Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics.
Targeted protein degradation (TPD), as exemplified by proteolysis-targeting chimera (PROTAC), is an emerging drug discovery platform. PROTAC molecules, which typically contain a target protein ligand linked to an E3 ligase ligand, recruit a target protein to the E3 ligase to induce its ubiquitination and degradation. Here, we applied PROTAC approaches to develop broad-spectrum antivirals targeting key host factors for many viruses and virus-specific antivirals targeting unique viral proteins. For host-directed antivirals, we identified a small-molecule degrader, FM-74-103, that elicits selective degradation of human GSPT1, a translation termination factor. FM-74-103-mediated GSPT1 degradation inhibits both RNA and DNA viruses. Among virus-specific antivirals, we developed viral RNA oligonucleotide-based bifunctional molecules (Destroyers). As a proof of principle, RNA mimics of viral promoter sequences were used as heterobifunctional molecules to recruit and target influenza viral polymerase for degradation. This work highlights the broad utility of TPD to rationally design and develop next-generation antivirals
Carbon Nanofiber versus Graphene-Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin.
Stretchable capacitive devices are instrumental for new-generation multifunctional haptic technologies particularly suited for soft robotics and electronic skin applications. A majority of elongating soft electronics still rely on silicone for building devices or sensors by multiple-step replication. In this study, fabrication of a reliable elongating parallel-plate capacitive touch sensor, using nitrile rubber gloves as templates, is demonstrated. Spray coating both sides of a rubber piece cut out of a glove with a conductive polymer suspension carrying dispersed carbon nanofibers (CnFs) or graphene nanoplatelets (GnPs) is sufficient for making electrodes with low sheet resistance values (≈10 Ω sq-1). The electrodes based on CnFs maintain their conductivity up to 100% elongation whereas the GnPs-based ones form cracks before 60% elongation. However, both electrodes are reliable under elongation levels associated with human joints motility (≈20%). Strikingly, structural damages due to repeated elongation/recovery cycles could be healed through annealing. Haptic sensing characteristics of a stretchable capacitive device by wrapping it around the fingertip of a robotic hand (ICub) are demonstrated. Tactile forces as low as 0.03 N and as high as 5 N can be easily sensed by the device under elongation or over curvilinear surfaces
Anthocyanins from Vitis coignetiae
Recently we have demonstrated that anthocyanins from fruits of Vitis coignetiae Pulliat (AIMs) have anticancer effects. Here, we investigate the effects of AIMs on cell proliferation and invasion as well as epithelial-mesenchymal transition (EMT) which have been linked to cancer metastasis in human uterine cervical cancer HeLa cells. AIMs inhibited the invasion of HeLa cells in a dose-dependent manner. AIMs inhibited MMP-9 expression in a dose-dependent manner. AIMs inhibited the motility of HeLa cells in a wound healing test. AIMs still suppressed NF-κB activation induced by TNF. AIMs also inhibited EMT in HeLa cells. AIMs suppressed vimentin, N-cadherin, and β-catenin expression and induced E-cadherin. AIMs also suppressed expression of β-catenin and Snail, which was regulated by GSK-3. These effects of AIMs were also limited in the HeLa cells treated with TNF. In conclusion, this study indicates that AIMs have anticancer effects by suppressing NF-κB-regulated genes and EMT, which relates to suppression of IκBα phosphorylation and GSK-3 activity, respectively. However, the effects of AIMs were attenuated in the TNF-high condition
Serum MicroRNAs as Biomarkers for Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection
BACKGROUND: MicroRNAs (miRNAs) have been shown to anticipate great cancer diagnostic potential. Recently, circulating miRNAs have been reported as promising biomarkers for various pathologic conditions. The objective of this study was to investigate the potential of serum miRNAs as novel biomarkers for hepatocellular carcinoma (HCC). METHODOLOGY/PRINCIPAL FINDINGS: This study was divided into four phases: (I) Ten candidate serum miRNAs were detected by using real-time RT-PCR, corresponding 10 HCC patients with chronic hepatitis B virus (HBV) infection and 10 age- and sex-matched healthy subjects. (II) Marker validation by real-time RT-PCR on HBV patients with (n = 48) or without HCC (n = 48), and healthy subjects (n = 24). (III) Marker detection by real-time RT-PCR in sera from another 14 HCC patients before and 1 month after surgical resection. (IV) We examined the correlation between the expressions of candidate serum miRNAs with clinical parameters of HCC patients. Although miR-222, miR-223 or miR-21 were significantly up- or down-regulated between HCC patients and healthy controls, no significant difference was observed in the levels of these miRNAs between HBV patients without and with HCC. MiR-122 in serum was significantly higher in HCC patients than healthy controls (p<0.001). More importantly, it was found that the levels of miR-122 were significantly reduced in the post-operative serum samples when compared to the pre-operative samples. Although serum miR-122 was also elevated in HBV patients with HCC comparing with those without HCC, the difference was at the border line (p = 0.043). CONCLUSIONS/SIGNIFICANCE: Our results suggest that serum miR-122 might serve as a novel and potential noninvasive biomarker for detection of HCC in healthy subjects, moreover, it might serve as a novel biomarker for liver injury but not specifically for detection of HCC in chronic HBV infection patients
- …