43 research outputs found
Optimizing DC Vaccination by Combination With Oncolytic Adenovirus Coexpressing IL-12 and GM-CSF
Dendritic cell (DC)-based vaccination is a promising strategy for cancer immunotherapy. However, clinical trials have indicated that immunosuppressive microenvironments induced by tumors profoundly suppress antitumor immunity and inhibit vaccine efficacy, resulting in insufficient reduction of tumor burdens. To overcome these obstacles and enhance the efficiency of DC vaccination, we generated interleukin (IL)-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-coexpressing oncolytic adenovirus (Ad-ΔB7/IL12/GMCSF) as suitable therapeutic adjuvant to eliminate immune suppression and promote DC function. By treating tumors with Ad-ΔB7/IL12/GMCSF prior to DC vaccination, DCs elicited greater antitumor effects than in response to either treatment alone. DC migration to draining lymph nodes (DLNs) dramatically increased in mice treated with the combination therapy. This result was associated with upregulation of CC-chemokine ligand 21 (CCL21+) lymphatics in tumors treated with Ad-ΔB7/IL12/GMCSF. Moreover, the proportion of CD4+CD25+ T-cells and vascular endothelial growth factor (VEGF) expression was decreased in mice treated with the combination therapy. Furthermore, combination therapy using immature DCs also showed effective antitumor effects when combined with Ad-ΔB7/IL12/GMCSF. The combination therapy had a remarkable therapeutic efficacy on large tumors. Taken together, oncolytic adenovirus coexpressing IL-12 and GM-CSF in combination with DC vaccination has synergistic antitumor effects and can act as a potent adjuvant for promoting and optimizing DC vaccination
Improved Sufur/Lithium Suflide Nano-composite Electrodes for Next-Generation Lithium Cells
A new generation of batteries with a capability of at least 400 Wh/kg is urgently needed since current lithium ion cells are reaching their maximum energy storage capability (~200 Wh/kg). The lithium/sulfur cell, with a theoretical specific energy of 2680 Wh/kg, is an attractive candidate. However, its rapid capacity decay owing to polysulfide dissolution requires good protection of the cathode materials before it can be commercialized. In our research, we are working on improving the performance of the Li/S cell by modifying the active material structure, electrolyte and binder. For the sulfur electrode, graphene oxide and other carbon materials with various surface functional groups are used as a component of nanostructured composite electrode materials. With the help of these functional groups as well as a new binder, nanostructured sulfur can be retained during cell cycling. The latest results show that the new C-S materials are exhibiting a capacity higher than 800 mAh/g(sulfur) even after cycling for 1000 times. For Li2S as the starting material, structured nanoparticles that contain carbon or other conductive materials are under evaluation. Recent results show that the capacity fading of Li2S electrodes can be alleviated using carbon. In addition to these experiments, simulations of the Li/S cell are being performed. The computational model includes a description of electrochemical kinetics, mass and charge transport in the electrolyte as well as the formation of solid phases. Different reaction mechanisms can be chosen to represent the operation of Li/S cells. Simulated results include charge and discharge curves, concentrations of dissolved ions and polysulfides, volumes of solid and liquid phases in different regions of the cell as well as electrochemical impedance spectra. These results facilitate the interpretation of experimental results. The refinement and validation of the model based on our most recent data is the subject of ongoing studies
Small anisotropy of the lower critical field and -wave two-gap feature in single crystal LiFeAs
The in- and out-of-plane lower critical fields and magnetic penetration
depths for LiFeAs were examined. The anisotropy ratio is
smaller than the expected theoretical value, and increased slightly with
increasing temperature from 0.6 to . This small degree of anisotropy
was numerically confirmed by considering electron correlation effect. The
temperature dependence of the penetration depths followed a power
law() below 0.3, with 3.5 for both and
. Based on theoretical studies of iron-based superconductors, these
results suggest that the superconductivity of LiFeAs can be represented by an
extended -wave due to weak impurity scattering effect. And the
magnitudes of the two gaps were also evaluted by fitting the superfluid density
for both the in- and out-of-plane to the two-gap model. The estimated values
for the two gaps are consistent with the results of angle resolved
photoemission spectroscopy and specific heat experiments.Comment: 10 pages, 5 figure
Therapeutic and Tumor-specific Immunity Induced by Combination of Dendritic Cells and Oncolytic Adenovirus Expressing IL-12 and 4-1BBL
Recently, gene-based cytokine treatment has been actively pursued as a new promising approach in treating cancer. In an effort to augment the efficiency of antitumor effect by cytokine-mediated immunotherapy, we selected both interleukin (IL)-12 and 4-1BB ligand (4-1BBL) as suitable cytokines to fully activate the type-1 immune response. Coexpression of IL-12 and 4-1BBL mediated by oncolytic adenovirus (Ad) greatly enhanced the antitumor effect. Further, synergistic enhancement in interferon (IFN)-γ levels were seen in mice treated with oncolytic Ad expressing both IL-12 and 4-1BBL. Next, to improve the overall antitumor immune response, we coadministered IL-12- and 4-1BBL-coexpressing oncolytic Ad with dendritic cells (DCs). Combination treatment of IL-12- and 4-1BBL-coexpressing oncolytic Ad and DCs elicited greater antitumor and antimetastatic effects than either treatment alone. Moreover, enhanced type-1 antitumor immune response and higher migratory abilities of DCs in tumors were also observed in the combination arms. The nature of the enhanced antitumor immune response seems to be mediated through the enhanced cytolytic activity of cytotoxic T lymphocytes (CTLs) and IFN-γ-releasing immune cells. Taken together, these data highlight the potential therapeutic benefit of combining IL-12- and 4-1BBL-coexpressing oncolytic Ad with DCs and warrants further evaluation in the clinic
Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial
Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Viscosity Approximation of Common Fixed Points for L-Lipschitzian Semigroup of Pseudocontractive Mappings in Banach Spaces
We study the strong convergence of two kinds of viscosity iteration processes for approximating common fixed points of the pseudocontractive semigroup in uniformly convex Banach spaces with uniformly Gâteaux differential norms. As special cases, we get the strong convergence of the implicit viscosity iteration process for approximating common fixed points of the nonexpansive semigroup in Banach spaces satisfying some conditions. The results presented in this paper extend and generalize some results concerned with the nonexpansive semigroup in (Chen and He, 2007) and the pseudocontractive mapping in (Zegeye et al., 2007) to the pseudocontractive semigroup in Banach spaces under different conditions
Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells.
Lithium sulfide (Li2S) is an attractive cathode material with a high theoretical specific capacity (1166 mAh g(-1)). However, the poor cycle life and rate capability have remained significant challenges, preventing its practical application. Here, Li2S spheres with size control have been synthesized for the first time, and a CVD method for converting them into stable carbon-coated Li2S core-shell (Li2S@C) particles has been successfully employed. These Li2S@C particles with protective and conductive carbon shells show promising specific capacities and cycling performance with a high initial discharge capacity of 972 mAh g(-1) Li2S (1394 mAh g(-1) S) at the 0.2C rate. Even with no added carbon, a very high Li2S content (88 wt % Li2S) electrode composed of 98 wt % 1 μm Li2S@C spheres and 2 wt % binder shows rather stable cycling performance, and little morphology change after 400 cycles at the 0.5C rate