2,444 research outputs found

    Testing the Distance-Duality Relation with a Combination of Cosmological Distance Observations

    Full text link
    In this paper, we propose an accurate test of the distance-duality (DD) relation, η=DL(z)(1+z)2/DA(z)=1\eta=D_{L}(z)(1+z)^{-2}/D_{A}(z)=1 (where DLD_{L} and DAD_{A} are the luminosity distances and angular diameter distances, respectively), with a combination of cosmological observational data of Type Ia Supernave (SNe Ia) from Union2 set and the galaxy cluster sample under an assumption of spherical model. In order to avoid bias brought by redshift incoincidence between observational data and to consider redshift error bars of both clusters and SNe Ia in analysis, we carefully choose the SNe Ia points which have the minimum acceptable redshift difference of the galaxy cluster sample (Δzmin=σz,SN+σz,cluster|\Delta z|_{\rm min} =\sigma_{z, \rm SN}+\sigma_{z, \rm cluster}). By assuming η\eta a constant and functions of the redshift parameterized by six different expressions, we find that there exists no conceivable evidence for variations in the DD relation concerning with observational data, since it is well satisfied within 1σ1\sigma confidence level for most cases. Further considering different values of Δz\Delta z in constraining, we also find that the choosing of Δz\Delta z may play an important role in this model-independent test of the distance-duality relation for the spherical sample of galaxy clusters.Comment: 9 pages, 4 figures, 1 table. accepted for publication in Res. Astron. Astrophy

    Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation

    Full text link
    In this paper, we study the problem of Team Member Replacement: given a team of people embedded in a social network working on the same task, find a good candidate who can fit in the team after one team member becomes unavailable. We conjecture that a good team member replacement should have good skill matching as well as good structure matching. We formulate this problem using the concept of graph kernel. To tackle the computational challenges, we propose a family of fast algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness between the existing and the new team structures. We conduct extensive experimental evaluations on real world datasets to demonstrate the effectiveness and efficiency. Our algorithms (a) perform significantly better than the alternative choices in terms of both precision and recall; and (b) scale sub-linearly.Comment: Initially submitted to KDD 201
    corecore