2,402 research outputs found

    Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries

    Full text link
    We discussed the scenario that a discrete flavor group combined with CP symmetry is broken to Z2×CPZ_2\times CP in both neutrino and charged lepton sectors. All lepton mixing angles and CP violation phases are predicted to depend on two free parameters θl\theta_{l} and θν\theta_{\nu} varying in the range of [0,π)[0, \pi). As an example, we comprehensively study the lepton mixing patterns which can be derived from the flavor group Δ(6n2)\Delta(6n^2) and CP symmetry. Three kinds of phenomenologically viable lepton mixing matrices are obtained up to row and column permutations. We further extend this approach to the quark sector. The precisely measured quark mixing angles and CP invariant can be accommodated for certain values of the free parameters θu\theta_{u} and θd\theta_{d}. A simultaneous description of quark and lepton flavor mixing structures can be achieved from a common flavor group Δ(6n2)\Delta(6n^2) and CP, and accordingly the smallest value of the group index nn is n=7n=7.Comment: 40 pages, 8 figure

    Implications on the first observation of charm CPV at LHCb

    Full text link
    Very recently, the LHCb Collaboration observed the CPCP violation (CPV) in the charm sector for the first time, with ΔACPdirACP(D0K+K)ACP(D0π+π)=(1.54±0.29)×103\Delta A_{CP}^{\rm dir}\equiv A_{CP}(D^0\to K^+K^-)-A_{CP}(D^0\to \pi^+\pi^-)=(-1.54\pm0.29)\times10^{-3}. This result is consistent with our prediction of ΔACPSM=(0.571.87)×103\Delta A_{CP}^{\rm SM}=(-0.57\sim -1.87)\times 10^{-3} obtained in the factorization-assisted topological-amplitude (FAT) approach in [PRD86,036012(2012)]. It implies that the current understanding of the penguin dynamics in charm decays in the Standard Model is reasonable. Motivated by the success of the FAT approach, we further suggest to measure the D+K+Kπ+D^+\to K^+K^-\pi^+ decay, which is the next potential mode to reveal the CPV of the same order as 10310^{-3}.Comment: 10 page

    Branching ratios and direct CP asymmetries in DPPD\to PP decays

    Full text link
    We propose a theoretical framework for analyzing two-body nonleptonic DD meson decays, based on the factorization of short-distance (long-distance) dynamics into Wilson coefficients (hadronic matrix elements of four-fermion operators). The parametrization of hadronic matrix elements in terms of several nonperturbative quantities is demonstrated for the DPPD\to PP decays, PP denoting a pseudoscalar meson. We consider the evolution of Wilson coefficients with energy release in individual decay modes, and the Glauber strong phase associated with the pion in nonfactorizable annihilation amplitudes, that is attributed to the unique role of the pion as a Nambu-Goldstone boson and a quark-anti-quark bound state simultaneously. The above inputs improve the global fit to the branching ratios involving the η\eta' meson, and resolves the long-standing puzzle from the D0π+πD^0\to\pi^+\pi^- and D0K+KD^0\to K^+K^- branching ratios, respectively. Combining short-distance dynamics associated with penguin operators and the hadronic parameters determined from the global fit to branching ratios, we predict direct CP asymmetries, to which the quark loops and the scalar penguin annihilation give dominant contributions. In particular, we predict ΔACPACP(K+K)ACP(π+π)=1.00×103\Delta A_{\rm CP}\equiv A_{\rm CP}(K^+K^-)-A_{\rm CP}(\pi^+\pi^-)=-1.00\times 10^{-3}, lower than the LHCb and CDF data.Comment: 17 pages, 3 figures, matches published versio

    Branching ratios and direct CP asymmetries in DPVD\to PV decays

    Full text link
    We study the two-body hadronic DPVD\to PV decays, where PP (VV) denotes a pseudoscalar (vector) meson, in the factorization-assisted topological-amplitude approach proposed in our previous work. This approach is based on the factorization of short-distance and long-distance dynamics into Wilson coefficients and hadronic matrix elements of four-fermion operators, respectively, with the latter being parametrized in terms of several nonperturbative quantities. We further take into account the ρ\rho-ω\omega mixing effect, which improves the global fit to the branching ratios involving the ρ0\rho^0 and ω\omega mesons. Combining short-distance dynamics associated with penguin operators and the hadronic parameters determined from the global fit to branching ratios, we predict direct CPCP asymmetries. In particular, the direct CPCP asymmetries in the D0K0K0, K0K0D^0\to K^0\overline{K}^{*0},~\overline{K}^0K^{*0}, D+π+ρ0D^+\to\pi^+\rho^0, and Ds+K+ω, K+ϕD_s^+\to K^+\omega,~K^+\phi decays are found to be of O(103){\cal O}(10^{-3}), which can be observed at the LHCb or future Belle II experiment. We also predict the CPCP asymmetry observables of some neutral DD meson decays.Comment: 16 pages, 2 figure

    Perturbative QCD study of BsB_s decays to a pseudoscalar meson and a tensor meson

    Full text link
    We study two-body hadronic BsPTB_s\to PT decays, with P(T)P (T) being a light pseudoscalar (tensor) meson, in the perturbative QCD approach. The CP-averaged branching ratios and the direct CP asymmetries of the ΔS=0\Delta S=0 modes are predicted, where ΔS\Delta S is the difference between the strange numbers of final and initial states. We also define and calculate experimental observables for the ΔS=1\Delta S=1 modes under the Bs0Bˉs0B_s^0-\bar{B}_s^0 mixing, including CP averaged branching ratios, time-integrated CP asymmetries, and the CP observables CfC_{f}, DfD_{f} and SfS_{f}. Results are compared to the BsPVB_s\to PV ones in the literature, and to the BPTB\to PT ones, which indicate considerable U-spin symmetry breaking. Our work provides theoretical predictions for the BsPTB_s\to PT decays for the first time, some of which will be potentially measurable at future experiments.Comment: 6 pages, 1 figur
    corecore