4 research outputs found

    Combination Drug Delivery Approaches in Metastatic Breast Cancer

    Get PDF
    Disseminated metastatic breast cancer needs aggressive treatment due to its reduced response to anticancer treatment and hence low survival and quality of life. Although in theory a combination drug therapy has advantages over single-agent therapy, no appreciable survival enhancement is generally reported whereas increased toxicity is frequently seen in combination treatment especially in chemotherapy. Currently used combination treatments in metastatic breast cancer will be discussed with their challenges leading to the introduction of novel combination anticancer drug delivery systems that aim to overcome these challenges. Widely studied drug delivery systems such as liposomes, dendrimers, polymeric nanoparticles, and water-soluble polymers can concurrently carry multiple anticancer drugs in one platform. These carriers can provide improved target specificity achieved by passive and/or active targeting mechanisms

    Multifunctional nanocarrier for image-guided delivery of bioactive agents

    No full text

    Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis.

    No full text
    The present work describes the synthesis, characterization, and biological evaluation of targetable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-anti-leishmanial drug conjugates for the treatment of visceral leishmaniasis (VL). Conjugates of HPMA copolymer with NPC1161, an 8-aminoquinoline analog with anti-leishmanial activity, containing N-acetylmannosamine (ManN) in the side chains were synthesized and characterized. In vitro anti-leishmanial efficacy of the conjugates was determined in mouse peritoneal macrophages infected with Leishmania donovani amastigotes. The conjugates were tested against mammalian KB cells for cytotoxicity. The effect of ManN content on uptake was evaluated in RAW 264 murine macrophages. In vivo anti-leishmanial efficacy was evaluated at 1 mg/kg intravenous dose in BALB/c mice. HPMA copolymer-NPC1161 conjugates with 5 mole% or higher ManN content were significantly (p30 microg/ml). All conjugates were relatively nontoxic towards the mammalian cells. Significantly (p<0.003) higher uptake was observed for targeted conjugates compared to nontargeted conjugates. The targeted conjugates were significantly more effective in vivo (67-80% inhibition, p<0.0001) than nontargeted conjugate (47% inhibition). HPMA copolymers containing ManN in the side chains can potentially reduce the toxicity and increase efficacy of anti-leishmanial drugs for the treatment of VL
    corecore