15 research outputs found
Variants of IL6, IL10, FCN2, RNASE3, IL12B and IL17B loci are associated with Schistosoma mansoni worm burden in the Albert Nile region of Uganda
Background:
Individuals genetically susceptible to high schistosomiasis worm burden may contribute disproportionately to transmission and could be prioritized for control. Identifying genes involved may guide development of therapy.
//
Methodology/Principal findings:
A cohort of 606 children aged 10–15 years were recruited in the Albert Nile region of Uganda and assessed for Schistosoma mansoni worm burden using the Up-Converting Particle Lateral Flow (UCP-LF) test detecting circulating anodic antigen (CAA), point-of-care Circulating Cathodic Antigen (POC-CCA) and Kato-Katz tests. Whole genome genotyping was conducted on 326 children comprising the top and bottom 25% of worm burden. Linear models were fitted to identify variants associated with worm burden in preselected candidate genes. Expression quantitative trait locus (eQTL) analysis was conducted for candidate genes with UCP-LF worm burden included as a covariate. Single Nucleotide Polymorphism loci associated with UCP-LF CAA included IL6 rs2066992 (OR = 0.43, p = 0.0006) and rs7793163 (OR = 2.0, p = 0.0007); IL21 SNP kgp513476 (OR 1.79, p = 0.0025) and IL17B SNP kgp708159 (OR = 0.35, p = 0.0028). A haplotype in the IL10 locus was associated with lower worm burden (OR = 0.53, p = 0.015) and overlapped SNPs rs1800896, rs1800871 and rs1800872. Significant haplotypes (p<0.05, overlapping significant SNP) associated with worm burden were observed in IL6 and the Th17 pathway IL12B and IL17B genes. There were significant eQTL in the IL6, IL5, IL21, IL25 and IFNG regions.
//
Conclusions:
Variants associated with S. mansoni worm burden were in IL6, FCN2, RNASE3, IL10, IL12B and IL17B gene loci. However only eQTL associations remained significant after Bonferroni correction. In summary, immune balance, pathogen recognition and Th17 pathways may play a role in modulating Schistosoma worm burden. Individuals carrying risk variants may be targeted first in allocation of control efforts to reduce the burden of schistosomiasis in the community
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa
[Figure: see text]
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Recommended from our members
Multidimensional analysis of the host response reveals prognostic and pathogen-driven immune subtypes among adults with sepsis in Uganda
Background
The global burden of sepsis is concentrated in sub-Saharan Africa, where severe infections disproportionately affect young, HIV-infected adults and high-burden pathogens are unique. In this context, poor understanding of sepsis immunopathology represents a crucial barrier to development of locally-effective treatment strategies. We sought to determine inter-individual immunologic heterogeneity among adults hospitalized with sepsis in a sub-Saharan African setting, and characterize associations between immune subtypes, infecting pathogens, and clinical outcomes.
Methods
Among a prospective observational cohort of 288 adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to 14 soluble host immune mediators, reflective of key domains of sepsis immunopathology (innate and adaptive immune activation, endothelial dysfunction, fibrinolysis), to identify immune subtypes in randomly-split discovery (N = 201) and internal validation (N = 87) sub-cohorts. In parallel, we applied similar methods to whole-blood RNA-sequencing data from a consecutive subset of patients (N = 128) to identify transcriptional subtypes, which we characterized using biological pathway and immune cell-type deconvolution analyses.
Results
Unsupervised clustering consistently identified two immune subtypes defined by differential activation of pro-inflammatory innate and adaptive immune pathways, with transcriptional evidence of concomitant CD56(-)/CD16( +) NK-cell expansion, T-cell exhaustion, and oxidative-stress and hypoxia-induced metabolic and cell-cycle reprogramming in the hyperinflammatory subtype. Immune subtypes defined by greater pro-inflammatory immune activation, T-cell exhaustion, and metabolic reprogramming were consistently associated with a high-prevalence of severe and often disseminated HIV-associated tuberculosis, as well as more extensive organ dysfunction, worse functional outcomes, and higher 30-day mortality.
Conclusions
Our results highlight unique host- and pathogen-driven features of sepsis immunopathology in sub-Saharan Africa, including the importance of severe HIV-associated tuberculosis, and reinforce the need to develop more biologically-informed treatment strategies in the region, particularly those incorporating immunomodulation
Présence de moraines sur la bordure occidentale de l'Aïr à la limite entre le Dévonien et le Carbonifère. Région d'Agadès (République du Niger)
In den Sedimenten, welche den präkambrischen Sockel des Air überlagern, finden sich Spuren einer Vereisung. Die Moränen und die Tone des unteren Teiles der Terada-Formation bedecken eine Paläotopographie, die zum ausgehenden Devon gehört, so dass eine Eiszeit zu Beginn des Karbon angenommen werden kann.Некоторые осадочные породы покрывающие докембрийский цоколь Аира, несут следы ледниковой деятельности. Морены и аргиллиты нижней части свиты Перада, наложенные на палеорельеф цоколя в конце Девона, наводят на мысль о существовании ледникового периода в начале Карбона.Among the sedimentary formations covering the precambrian base of the Aïr, some of them contain traces of glacial phenomena. The moraines and argillites of the lower part of the Terada Series, overlying a paleotopography of the end of Devonian, suggest a glacial episode at the beginning of Carboniferous.Parmi les terrains sédimentaires qui recouvrent le Socle précambrien de l'Aïr, certains recèlent des traces de phénomènes glaciaires. Les moraines et les argilites de la partie inférieure de la Série de Térada, plaquées sur une paléotopographie du Socle de la fin du Dévonien, suggèrent en effet un épisode glaciaire au début du Carbonifère.Valsardieu Claude, Dars René. Présence de moraines sur la bordure occidentale de l'Aïr à la limite entre le Dévonien et le Carbonifère. Région d'Agadès (République du Niger). In: Bulletin du Service de la carte géologique d'Alsace et de Lorraine, tome 24, n°4, 1971. Sédimentologie et géochimie de la surface. pp. 269-276
High prevalence of Schistosoma mansoni infection and stunting among school age children in communities along the Albert-Nile, Northern Uganda: A cross sectional study
BackgroundKnowing the prevalence of schistosomiasis is key to informing programmes to control and eliminate the disease as a public health problem. It is also important to understand the impact of infection on child growth and development in order to allocate appropriate resources and effort to the control of the disease.MethodsWe conducted a survey to estimate the prevalence of schistosomiasis among school aged children in villages along the Albert-Nile shore line in the district of Pakwach, North Western Uganda. A total of 914 children aged between 10-15 years were screened for Schistosoma mansoni using the POC-CCA and Kato Katz (KK) techniques. The infection intensities were assessed by POC-CCA and KK as well as CAA tests. The KK intensities were also correlated with POC-CCA and with CAA intensity. Anthropometric measurements were also taken and multivariate analysis was carried out to investigate their association with infection status.ResultsThe prevalence of schistosomiasis using the POC-CCA diagnostic test was estimated at 85% (95% CI: 83-87), being highest amongst children living closer to the Albert-Nile shoreline. Visual scoring of the POC-CCA results was more sensitive than the Kato Katz test and was positively correlated with the quantified infection intensities by the CAA test. The majority of the children were underweight (BMI< 18.5), and most notably, boys had significantly lower height for age (stunting) than girls in the same age range (p < 0.0001), but this was not directly associated with S. mansoni infection.ConclusionHigh prevalence of S. mansoni infection in the region calls for more frequent mass drug administration with praziquantel. We observed high levels of stunting which was not associated with schistosomiasis. There is a need for improved nutrition among the children in the area.Author summarySchistosomiasis is a neglected but frequent disease that is caused by schistosomes, with over 290 million people worldwide at risk of infection. The major mode of transmission is through contact with fresh water sources infested with infected snails (the intermediate host). In this study, using the point of care test (POC-CCA), we screened 914 school aged children (10-15 years) living in the rural communities along the Lake Albert- River Nile shores of Pakwach district in Northern Uganda. We observed a very high prevalence of S. mansoni infections (over 80%) although the prevalence dropped to 40% in communities that were further from the lake shores. This high prevalence was also coupled with Kato Katz light schistosome infection intensities as categorised by WHO guidelines. We further compared the POC-CCA and Kato Katz tests to the more sensitive CAA assay and this revealed that even though both tests gave good probability of positive prediction, the POC-CCA had higher sensitivity in screening for S. mansoni infections than Kato Katz assay. The study also revealed high levels of stunting within the children, more so amongst boys. Frequent screening and mass treatment of these communities with praziquantel will reduce on the infection rates. But in addition, improved hygiene and sanitation will be required for a sustainable reduction in the prevalence and morbidity of schistosomiasis in the Albert-Nile communities along with dietary intervention for optimal child health
Variants of IL6, IL10, FCN2, RNASE3, IL12B and IL17B loci are associated with Schistosoma mansoni worm burden in the Albert Nile region of Uganda.
BackgroundIndividuals genetically susceptible to high schistosomiasis worm burden may contribute disproportionately to transmission and could be prioritized for control. Identifying genes involved may guide development of therapy.Methodology/principal findingsA cohort of 606 children aged 10-15 years were recruited in the Albert Nile region of Uganda and assessed for Schistosoma mansoni worm burden using the Up-Converting Particle Lateral Flow (UCP-LF) test detecting circulating anodic antigen (CAA), point-of-care Circulating Cathodic Antigen (POC-CCA) and Kato-Katz tests. Whole genome genotyping was conducted on 326 children comprising the top and bottom 25% of worm burden. Linear models were fitted to identify variants associated with worm burden in preselected candidate genes. Expression quantitative trait locus (eQTL) analysis was conducted for candidate genes with UCP-LF worm burden included as a covariate. Single Nucleotide Polymorphism loci associated with UCP-LF CAA included IL6 rs2066992 (OR = 0.43, p = 0.0006) and rs7793163 (OR = 2.0, p = 0.0007); IL21 SNP kgp513476 (OR 1.79, p = 0.0025) and IL17B SNP kgp708159 (OR = 0.35, p = 0.0028). A haplotype in the IL10 locus was associated with lower worm burden (OR = 0.53, p = 0.015) and overlapped SNPs rs1800896, rs1800871 and rs1800872. Significant haplotypes (pConclusionsVariants associated with S. mansoni worm burden were in IL6, FCN2, RNASE3, IL10, IL12B and IL17B gene loci. However only eQTL associations remained significant after Bonferroni correction. In summary, immune balance, pathogen recognition and Th17 pathways may play a role in modulating Schistosoma worm burden. Individuals carrying risk variants may be targeted first in allocation of control efforts to reduce the burden of schistosomiasis in the community