25 research outputs found

    2種類の正常眼圧緑内障モデルマウスに対するN-アセチルシステインの網膜変性抑制効果の違い

    Get PDF
    N-acetylcysteine (NAC) is widely used as a mucolytic agent and as an antidote to paracetamol overdose. NAC serves as a precursor of cysteine and stimulates the synthesis of glutathione in neural cells. Suppressing oxidative stress in the retina may be an effective therapeutic strategy for glaucoma, a chronic neurodegenerative disease of the retinal ganglion cells (RGCs) and optic nerves. Here we examined the therapeutic potential of NAC in two mouse models of normal tension glaucoma, in which excitatory amino-acid carrier 1 (EAAC1) or glutamate/aspartate transporter (GLAST) gene was deleted. EAAC1 is expressed in retinal neurons including RGCs, whereas GLAST is mainly expressed in Müller glial cells. Intraperitoneal administration of NAC prevented RGC degeneration and visual impairment in EAAC1-deficient (knockout; KO) mice, but not in GLAST KO mice. In EAAC1 KO mice, oxidative stress and autophagy were suppressed with increased glutathione levels by NAC treatment. Our findings suggest a possibility that systemic administration of NAC may be available for some types of glaucoma patients

    Delayed Onset of Experimental Autoimmune Encephalomyelitis in Olig1 Deficient Mice

    Get PDF
    BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH) transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in Olig1(-/-) mice is significantly slower than wide-type (WT) mice (19.8 ± 2.2 in Olig1(-/-) mice and 9.5 ± 0.3 days in WT mice). In addition, 10% of Olig1(-/-) mice did not develop EAE by the end of the observation periods (60 days). The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/-) mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/-) mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG). The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS

    Ripasudil Promotes Neuroprotection

    Get PDF
    PURPOSE. To assess if ripasudil has a neuroprotective effect using mice with excitatory amino acid carrier 1 (EAAC1) deletion (EAAC1 knockout [KO] mice), a mouse model of normal tension glaucoma. METHODS. Topical administration (5 μL/day) of two different concentrations of ripasudil (0.4% and 2%) were applied to EAAC1 KO mice from 5 to 12 weeks old. Optical coherence tomography, multifocal electroretinograms, the measurement of intraocular pressure (IOP), and histopathology analyses were performed at 5, 8, and 12 weeks old. Retrograde labeling of retinal ganglion cells (RGCs), immunoblot, and immunohistochemical analyses of phosphorylated p38 mitogen-activated protein kinase (MAPK) in the retina were performed at 8 weeks old. RESULTS. Topical ripasudil ameliorated retinal degeneration and improved visual function in EAAC1 KO mice at both 8 and 12 weeks old. Ripasudil reduced IOP and strongly suppressed the phosphorylation of p38 MAPK that stimulates RGC death in EAAC1 KO mice. CONCLUSIONS. These results suggest that, in addition to IOP reduction, ripasudil prevents glaucomatous retinal degeneration by neuroprotection, which is achieved by suppressing cell-death signaling pathways

    Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis

    Get PDF
    Glaucoma is a neurodegenerative disease of the eye and it is one of the leading causes of blindness. Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons, namely, the optic nerve, usually associated with elevated intraocular pressure (IOP). Current glaucoma therapies target reduction of IOP, but since RGC death is the cause of irreversible vision loss, neuroprotection may be an effective strategy for glaucoma treatment. One of the risk factors for glaucoma is increased oxidative stress, and drugs with antioxidative properties including valproic acid and spermidine, as well as inhibition of apoptosis signal-regulating kinase 1, an enzyme that is involved in oxidative stress, have been reported to prevent glaucomatous retinal degeneration in mouse models of glaucoma. Optic neuritis is a demyelinating inflammation of the optic nerve that presents with visual impairment and it is commonly associated with multiple sclerosis, a chronic demyelinating disease of the central nervous system. Although steroids are commonly used for treatment of optic neuritis, reduction of oxidative stress by approaches such as gene therapy is effective in ameliorating optic nerve demyelination in preclinical studies. In this review, we discuss oxidative stress as a therapeutic target for glaucoma and optic neuritis

    Edaravone prevents normal tension glaucoma

    Get PDF
    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP

    Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy

    Get PDF
    Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy

    Dock3-NMDA receptor interaction as a target for glaucoma therapy

    No full text
    y. Glaucoma is a neurodegenerative disease of the eye and it is one of the major causes of blindness. Glaucoma is usually associated with elevated intraocular pressure (IOP) and the current therapy focuses on reduction of IOP. However, neuroprotective strategies could also be beneficial for treatment of glaucoma because the pathology of the disease involves retinal ganglion cell (RGC) death and damage to the optic nerve. Dedicator of cytokinesis 3 (Dock3) is an atypical guanine exchange factor (GEF) that belongs to a family of Dock proteins, Dock1-11. Dock3 exerts neuroprotective effects on the retina and optic nerve, and studies revealed that some of the Dock3-mediated effects are GEF-independent. One of these mechanisms is that Dock3 directly binds to the GluN2B subunit of the Nmethyl-D-aspartate (NMDA) receptor. Upon stimulation by NMDA or optic nerve crush, overexpression of Dock3 promotes internalization and degradation of the NMDA receptor in the retina in vivo. It is suggested that this process is mediated by inhibition of Fyn, a Src family tyrosine kinase. Reduction in NMDA receptor expression results in decreased excitotoxic damage and oxidative stress, thereby promoting RGC survival. In this review, we discuss the therapeutic potential of neuroprotection for glaucoma and the effects of Dock3 on NMDA receptors. We also discuss apoptosis signalregulating kinase 1 (ASK1), a member of mitogenactivated protein kinase kinase kinase that is a key regulator of cellular responses to oxidative stress, as an innovative therapeutic target for glaucoma

    Interleukin-1 Stimulates Glutamate Uptake in Glial Cells by Accelerating Membrane Trafficking of Na+/K+-ATPase via Actin Depolymerization▿

    No full text
    Interleukin-1 (IL-1) is a mediator of brain injury induced by ischemia, trauma, and chronic neurodegenerative disease. IL-1 also has a protective role by preventing neuronal cell death from glutamate neurotoxicity. However, the cellular mechanisms of IL-1 action remain unresolved. In the mammalian retina, glutamate/aspartate transporter (GLAST) is a Na+-dependent, major glutamate transporter localized to Müller glial cells, and loss of GLAST leads to glaucomatous retinal degeneration (T. Harada, C. Harada, K. Nakamura, H. A. Quah, A. Okumura, K. Namekata, T. Saeki, M. Aihara, H. Yoshida, A. Mitani, and K. Tanaka, J. Clin. Investig. 117:1763-1770, 2007). We show here that IL-1 increases glutamate uptake in Müller cells by a mechanism that involves increased membrane Na+/K+-ATPase localization, required for counteracting the Na+-glutamate cotransport. IL-1 activated the p38 mitogen-activated protein kinase (MAPK)/capase 11 pathway, which destabilizes the actin cytoskeleton allowing Na+/K+-ATPase membrane redistribution. Furthermore, pretreatment with IL-1 protected retinal neurons from glutamate neurotoxicity through p38 MAPK signaling. Our observations suggested that IL-1 acts as a potential neuroprotective agent by modulating the functions of the glia-neuron network
    corecore