1,614 research outputs found

    Random matrix model at nonzero chemical potentials with anomaly effects

    Full text link
    Phase diagram of the chiral random matrix model with U(1)A breaking term is studied with the quark chemical potentials varied independently at zero temperature, by taking the chiral and meson condensates as the order parameters. Although, without the U(1)A breaking term, chiral transition of each flavor can happen separately responding to its chemical potential, the U(1)A breaking terms mix the chiral condensates and correlate the phase transitions. In the three flavor case, we find that there are mixings between the meson and chiral condensates due to the U(1)A anomaly, which makes the meson condensed phase more stable. Increasing the hypercharge chemical potential (μY\mu_Y) with the isospin and quark chemical potentials (μI\mu_I, μq\mu_q) kept small, we observe that the kaon condensed phase becomes the ground state and at the larger μY\mu_Y the pion condense phase appears unexpectedly, which is caused by the competition between the chiral restoration and the meson condensation. The similar happens when μY\mu_Y and μI\mu_I are exchanged, and the kaon condensed phase becomes the ground state at larger μI\mu_I below the full chiral restoration.Comment: 12 pages, 8 figure

    Stability of color-flavor locked strangelets

    Full text link
    The stability of color-flavor locked (CFL) strangelets is studied in the three-flavor Nambu--Jona-Lasinio model. We consider all quark flavors to be massless, for simplicity. By making use of the multiple reflection expansion, we explicitly take into account finite size effects and formulate the thermodynamic potential for CFL strangelets. We find that the CFL gap could be large enough so that the energy per baryon number of CFL strangelets is greatly affected. In addition, if the quark-quark coupling constant is larger than a certain critical value, there is a possibility of finding absolutely stable CFL strangelets.Comment: 7 pages, 3 figures, to appear in Int. J. Mod. Phys.

    Non-Abelian Stokes Theorem and Quark Confinement in SU(3) Yang-Mills Gauge Theory

    Get PDF
    We derive a new version of SU(3) non-Abelian Stokes theorem by making use of the coherent state representation on the coset space SU(3)/(U(1)×U(1))=F2SU(3)/(U(1)\times U(1))=F_2, the flag space. Then we outline a derivation of the area law of the Wilson loop in SU(3) Yang-Mills theory in the maximal Abelian gauge (The detailed exposition will be given in a forthcoming article). This derivation is performed by combining the non-Abelian Stokes theorem with the reformulation of the Yang-Mills theory as a perturbative deformation of a topological field theory recently proposed by one of the authors. Within this framework, we show that the fundamental quark is confined even if G=SU(3)G=SU(3) is broken by partial gauge fixing into H=U(2)H=U(2) just as GG is broken to H=U(1)×U(1)H=U(1) \times U(1). An origin of the area law is related to the geometric phase of the Wilczek-Zee holonomy for U(2). Abelian dominance is an immediate byproduct of these results and magnetic monopole plays the dominant role in this derivation.Comment: 14 pages, Latex, no figures, version accepted for publication in Mod. Phys. Lett. A (some comments are added in the final parts

    Black ring formation in particle systems

    Full text link
    It is known that the formation of apparent horizons with non-spherical topology is possible in higher-dimensional spacetimes. One of these is the black ring horizon with S1×SD3S^1\times S^{D-3} topology where DD is the spacetime dimension number. In this paper, we investigate the black ring horizon formation in systems with nn-particles. We analyze two kinds of system: the high-energy nn-particle system and the momentarily-static nn-black-hole initial data. In the high-energy particle system, we prove that the black ring horizon does not exist at the instant of collision for any nn. But there remains a possibility that the black ring forms after the collision and this result is not sufficient. Because calculating the metric of this system after the collision is difficult, we consider the momentarily-static nn-black-hole initial data that can be regarded as a simplified nn-particle model and numerically solve the black ring horizon that surrounds all the particles. Our results show that there is the minimum particle number that is necessary for the black ring formation and this number depends on DD. Although many particle number is required in five-dimensions, n=4n=4 is sufficient for the black ring formation in the D7D\ge 7 cases. The black ring formation becomes easier for larger DD. We provide a plausible physical interpretation of our results and discuss the validity of Ida and Nakao's conjecture for the horizon formation in higher-dimensions. Finally we briefly discuss the probable methods of producing the black rings in accelerators.Comment: 26 pages, 7 figure

    Volume Expansion of Swiss-Cheese Universe

    Full text link
    In order to investigate the effect of inhomogeneities on the volume expansion of the universe, we study modified Swiss-Cheese universe model. Since this model is an exact solution of Einstein equations, we can get an insight into non-linear dynamics of inhomogeneous universe from it. We find that inhomogeneities make the volume expansion slower than that of the background Einstein-de Sitter universe when those can be regarded as small fluctuations in the background universe. This result is consistent with the previous studies based on the second order perturbation analysis. On the other hand, if the inhomogeneities can not be treated as small perturbations, the volume expansion of the universe depends on the type of fluctuations. Although the volume expansion rate approaches to the background value asymptotically, the volume itself can be finally arbitrarily smaller than the background one and can be larger than that of the background but there is an upper bound on it.Comment: 22 pages, 7 figures, to be submitted to Phys. Rev.

    Two photon decay of π0\pi^0 and η\eta at finite temperature and density

    Full text link
    A comparative study of the anomalous decays π0,ηγγ\pi^0, \eta \to\gamma\gamma, at finite temperature and at finite density, is performed in the framework of the three--flavor Nambu--Jona-Lasinio. The similarities and differences between both scenarios are discussed. In both cases the lifetimes of these mesons decrease significantly at the critical point, although this might not be sufficient to observe enhancement of these decays in heavy-ion collisions.Comment: 5 pages, 1 figure. Talk given at Strange Quark Matter 2004, Cape Town, South Africa, 15-20 September, 200

    Unusual superexchange pathways in a Ni triangular lattice of NiGa2_2S4_4 with negative charge-transfer energy

    Full text link
    We have studied the electronic structure of the Ni triangular lattice in NiGa2_2S4_4 using photoemission spectroscopy and subsequent model calculations. The cluster-model analysis of the Ni 2pp core-level spectrum shows that the S 3pp to Ni 3dd charge-transfer energy is \sim -1 eV and the ground state is dominated by the d9Ld^9L configuration (LL is a S 3pp hole). Cell perturbation analysis for the NiS2_2 triangular lattice indicates that the strong S 3pp hole character of the ground state provides the enhanced superexchange interaction between the third nearest neighbor sites.Comment: 10 pages, 5 figures, accepted to PR
    corecore