770 research outputs found

    Postmodern String Theory: Stochastic Formulation

    Full text link
    In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or {\it cellular} structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.Comment: 24pages, ReVTe

    Langevin Analysis of Eternal Inflation

    Full text link
    It has been widely claimed that inflation is generically eternal to the future, even in models where the inflaton potential monotonically increases away from its minimum. The idea is that quantum fluctuations allow the field to jump uphill, thereby continually revitalizing the inflationary process in some regions. In this paper we investigate a simple model of this process, pertaining to inflation with a quartic potential, in which analytic progress may be made. We calculate several quantities of interest, such as the expected number of inflationary efolds, first without and then with various selection effects. With no additional weighting, the stochastic noise has little impact on the total number of inflationary efoldings even if the inflaton starts with a Planckian energy density. A "rolling" volume factor, i.e. weighting in proportion to the volume at that time, also leads to a monotonically decreasing Hubble constant and hence no eternal inflation. We show how stronger selection effects including a constraint on the initial and final states and weighting with the final volume factor can lead to a picture similar to that usually associated with eternal inflation.Comment: 22 pages, 2 figure

    Nambu-Goldstone Mechanism in Real-Time Thermal Field Theory

    Get PDF
    In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven based on Schwinger-Dyson equation in the real-time thermal field theory in the fermion bubble diagram approximation that, at finite temperature TT below the symmetry restoration temperature TcT_c, a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SUL(2)×UY(1)→UQ(1)SU_L(2)\times U_Y(1) \to U_Q(1) if the two fermion flavors in the one generation are mass-degenerate, thus Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to "thermal flactuation", the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ\Lambda in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory.Comment: 11 pages, revtex, no figure, Phys. Rev. D, to appea

    Spinors for Spinning p-Branes

    Full text link
    The group of the p-brane world volume preserving diffeomorphism is considered. The infinite-dimensional spinors of this group are related, by the nonlinear realization techniques, to the corresponding spinors of its linear subgroup, that are constructed explicitly. An algebraic construction of the Virasoro and Neveu-Schwarz-Ramond algebras, based on this infinite-dimensional spinors and tensors, is demonstrated.Comment: 18 page

    Nambu-Goldstone Modes in Gravitational Theories with Spontaneous Lorentz Breaking

    Full text link
    Spontaneous breaking of Lorentz symmetry has been suggested as a possible mechanism that might occur in the context of a fundamental Planck-scale theory, such as string theory or a quantum theory of gravity. However, if Lorentz symmetry is spontaneously broken, two sets of questions immediately arise: what is the fate of the Nambu-Goldstone modes, and can a Higgs mechanism occur? A brief summary of some recent work looking at these questions is presented here.Comment: 6 pages. Presented at the meeting "From Quantum to Cosmos," Washington, D.C., May 2006; published in Int. J. Mod. Phys. D16:2357-2363, 200

    Renormalization Group Approach to Cosmological Back Reaction Problems

    Get PDF
    We investigated the back reaction of cosmological perturbations on the evolution of the universe using the second order perturbation of the Einstein's equation. To incorporate the back reaction effect due to the inhomogeneity into the framework of the cosmological perturbation, we used the renormalization group method. The second order zero mode solution which appears by the non-linearities of the Einstein's equation is regarded as a secular term of the perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant. For a dust dominated universe, using the second order gauge invariant quantity, we derived the renormalization group equation which determines the effective dynamics of the Friedman-Robertson-Walker universe with the back reaction effect in a gauge invariant manner. We obtained the solution of the renormalization group equation and found that perturbations of the scalar mode and the long wavelength tensor mode works as positive spatial curvature, and the short wavelength tensor mode as radiation fluid.Comment: 18 pages, revtex, to appear in Phys. Rev.

    QCD and String Theory

    Full text link
    This talk begins with some history and basic facts about string theory and its connections with strong interactions. Comparisons of stacks of Dirichlet branes with curved backgrounds produced by them are used to motivate the AdS/CFT correspondence between superconformal gauge theory and string theory on a product of Anti-de Sitter space and a compact manifold. The ensuing duality between semi-classical spinning strings and long gauge theory operators is briefly reviewed. Strongly coupled thermal SYM theory is explored via a black hole in 5-dimensional AdS space, which leads to explicit results for its entropy and shear viscosity. A conjectured universal lower bound on the viscosity to entropy density ratio, and its possible relation to recent results from RHIC, are discussed. Finally, some available results on string duals of confining gauge theories are briefly reviewed.Comment: 12 pages, prepared for the Proceedings of the 2005 Lepton-Photon Symposium; v2: minor revisions, references added, the version to appear in the proceeding

    Effective action of a 2+1 dimensional system of nonrelativistic fermions in the presence of a uniform magnetic field: dissipation effects

    Full text link
    The effective action of nonrelativistic fermions in 2+1 dimensions is analyzed at finite temperature and chemical potential in the presence of a uniform magnetic field perpendicular to the plane. The method used is a generalization of the derivative expansion technique. The induced Chern-Simons term is computed and shown to exhibit the Hall quantization. Effects of dissipation due to collisions are also analyzed.Comment: 12 page

    No First-Order Phase Transition in the Gross-Neveu Model?

    Full text link
    Within a variational calculation we investigate the role of baryons for the structure of dense matter in the Gross-Neveu model. We construct a trial ground state at finite baryon density which breaks translational invariance. Its scalar potential interpolates between widely spaced kinks and antikinks at low density and the value zero at infinite density. Its energy is lower than the one of the standard Fermi gas at all densities considered. This suggests that the discrete gamma_5 symmetry of the Gross-Neveu model does not get restored in a first order phase transition at finite density, at variance with common wisdom.Comment: 16 pages, 7 figures, LaTe

    Dynamical Symmetry Breaking in Models with the Yukawa Interaction

    Full text link
    We discuss models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction. The chiral condensate and the fermion mass are calculated analytically. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.Comment: 7 pages, no figures, in Eqs. (7) and (11) one coefficient was change
    • …
    corecore