4 research outputs found

    Strangeness Enhancement in p+Ap+A and S+AS+A Interactions at SPS Energies

    Full text link
    The systematics of strangeness enhancement is calculated using the HIJING and VENUS models and compared to recent data on pp\,pp\,, pA\,pA\, and AA\,AA\, collisions at CERN/SPS energies (200AGeV200A\,\, GeV\,). The HIJING model is used to perform a {\em linear} extrapolation from pppp to AAAA. VENUS is used to estimate the effects of final state cascading and possible non-conventional production mechanisms. This comparison shows that the large enhancement of strangeness observed in S+AuS+Au collisions, interpreted previously as possible evidence for quark-gluon plasma formation, has its origins in non-equilibrium dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced back to the change in the production dynamics %from pppp to minimum bias pSpS and central SSSS collisions. A factor of two enhancement of Λ0\Lambda^{0} at mid-rapidity is indicated by recent pSpS data, where on the average {\em one} projectile nucleon interacts with only {\em two} target nucleons. There appears to be another factor of two enhancement in the light ion reaction SSSS relative to pSpS, when on the average only two projectile nucleons interact with two target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    Accelerated syntheses of amine-bis(phenol) ligands in polyethylene glycol or “on water” under microwave irradiation

    Get PDF
    Pure amine-bis(phenol) ligands are readily accessible in high yield, often >90%, when the Mannich condensation reactions are performed “on water” or in poly(ethyleneglycol) (PEG). Microwave-assisted synthesis dramatically reduces the time and energy required to prepare these molecules, typically from 24 h to 5 min. The approach seems to be widely applicable (7 amines and 5 phenols were tested to yield a diverse set of bis(phenol) ligands). Significant improvements in yield were observed for ligands derived from di-tert-amyl and di-tert-butyl phenols, possibly resulting from a hydrophobic effect. Single crystal X-ray diffraction data for the ligand derived from p-cresol and N,N′-dimethylethylenediamine is reported
    corecore