11,854 research outputs found
A DC Programming Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique
This paper continues our effort initiated in [9] to study Multicast
Communication Networks, modeled as bilevel hierarchical clustering problems, by
using mathematical optimization techniques. Given a finite number of nodes, we
consider two different models of multicast networks by identifying a certain
number of nodes as cluster centers, and at the same time, locating a particular
node that serves as a total center so as to minimize the total transportation
cost through the network. The fact that the cluster centers and the total
center have to be among the given nodes makes this problem a discrete
optimization problem. Our approach is to reformulate the discrete problem as a
continuous one and to apply Nesterov smoothing approximation technique on the
Minkowski gauges that are used as distance measures. This approach enables us
to propose two implementable DCA-based algorithms for solving the problems.
Numerical results and practical applications are provided to illustrate our
approach
QED corrections to isospin-related decay rates of charged and neutral B mesons
We estimate the isospin-violating QED radiative corrections to the
charged-to-neutral ratios of the decay rates for B^+ and B^0 in non-leptonic B
meson decays. In particular, these corrections are potentially important for
precision measurement of the charged-to-neutral production ratio of B meson in
e^+e^- annihilation. We calculate explicitly the QED corrections to the ratios
of two different types of decay rates \Gamma(B^+ \to J/\psi K^+)/\Gamma(B^0 \to
J/\psi K^0) and \Gamma(B^+ \to D^+_S \bar{D^0})/\Gamma(B^0 \to D^+_S D^-)
taking into account the form factors of the mesons based on the vector meson
dominance model, and compare them with the results obtained for the point-like
mesons.Comment: 7 pages, 9 eps figure
Propagation of Exchange Bias in CoFe/FeMn/CoFe Trilayers
CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in
magnetic field and at room temperature. The exchange bias field
depends strongly on the order of depositions and is much higher at CoFe/FeMn
than at FeMn/CoFe interfaces. By combining the two bilayer structures into
symmetric CoFe/FeMn()/CoFe trilayers, and
of the top and bottom CoFe layers, respectively, are both enhanced.
Reducing of the trilayers also results in enhancements of
both and . These results evidence the propagation of
exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by
the FeMn antiferromagnetic order
Kaon semileptonic decay (K_{l3}) form factors from the instanton vacuum
We investigate the kaon semileptonic decay (K_{l3}) form factors within the
framework of the nonlocal chiral quark model from the instanton vacuum, taking
into account the effects of flavor SU(3) symmetry breaking. We also consider
the problem of gauge invariance arising from the momentum-dependent quark mass
in the present work. All theoretical calculations are carried out without any
adjustable parameter, the average instanton size (rho ~ 1/3 fm) and the
inter-instanton distance (R ~ 1 fm) having been fixed. We also show that the
present results satisfy the Callan-Treiman low-energy theorem as well as the
Ademollo-Gatto theorem. Using the K_{l3} form factors, we evaluate relevant
physical quantities. It turns out that the effects of flavor SU(3) symmetry
breaking are essential in reproducing the kaon semileptonic form factors. The
present results are in a good agreement with experiments, and are compatible
with other model calculations.Comment: 12 pages, 3 figures, submitted to PR
- …