14,567 research outputs found
Origin of the anomalous long lifetime of 14C
We report the microscopic origins of the anomalously suppressed beta decay of
14C to 14N using the ab initio no-core shell model (NCSM) with the Hamiltonian
from chiral effective field theory (EFT) including three-nucleon force (3NF)
terms. The 3NF induces unexpectedly large cancellations within the p-shell
between contributions to beta decay, which reduce the traditionally large
contributions from the NN interactions by an order of magnitude, leading to the
long lifetime of 14C.Comment: 4 pages, 2 figures and 2 table
Short range ferromagnetism and spin glass state in
Dynamic magnetic properties of are
reported. The system appears to attain local ferromagnetic order at
K. Below this temperature the low field
magnetization becomes history dependent, i.e. the zero field cooled (ZFC) and
field cooled (FC) magnetization deviate from each other and closely logarithmic
relaxation appears at our experimental time scales (0.3- sec). The zero
field cooled magnetization has a maximum at K,
whereas the field cooled magnetization continues to increase, although less
sharply, also below this temperature. Surprisingly, the dynamics of the system
shows non-equilibrium spin glass (SG) features not only below the maximum in
the ZFC magnetization, but also in the temperature region between this maximum
and . The aging and temperature cycling experiments show only
quantitative differences in the dynamic behavior above and below the maximum in
the ZFC-magnetization; similarly, memory effects are observed in both
temperature regions. We attribute the high temperature behavior to the
existence of clusters of short range ferromagnetic order below
; the configuration evolves into a conventional spin glass
state at temperatures below .Comment: REVTeX style; 8 pages, 8 figure
Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters
The freezing of metal nanoclusters such as gold, silver, and copper exhibits
a novel structural evolution. The formation of the icosahedral (Ih) structure
is dominant despite its energetic metastability. This important phenomenon,
hitherto not understood, is studied by calculating free energies of gold
nanoclusters. The structural transition barriers have been determined by using
the umbrella sampling technique combined with molecular dynamics simulations.
Our calculations show that the formation of Ih gold nanoclusters is attributed
to the lower free energy barrier from the liquid to the Ih phases compared to
the barrier from the liquid to the face-centered-cubic crystal phases
Memory and superposition in a spin glass
Non-equilibrium dynamics in a Ag(Mn) spin glass are investigated by
measurements of the temperature dependence of the remanent magnetisation. Using
specific cooling protocols before recording the thermo- or isothermal remanent
magnetisations on re-heating, it is found that the measured curves effectively
disclose non-equilibrium spin glass characteristics such as ageing and memory
phenomena as well as an extended validity of the superposition principle for
the relaxation. The usefulness of this "simple" dc-method is discussed, as well
as its applicability to other disordered magnetic systems.Comment: REVTeX style; 8 pages, 4 figure
Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules
The National Ignition Facility (NIF) technology is designed to drive
deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition
using indirect radiation from laser beam energy captured in a hohlraum.
Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix
between the DT fue l and the ablator shell material are of fundamental physical
interest and can affect the performance characteristics of the capsule. In this
Letter we describe new radiochemical diagnostics for mix processes in ICF
capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy
tritons with shell material produce high-energy -emitters.
We show that mix between the DT fuel and the shell material enhances
high-energy prompt beta emission from these reactions by more than an order of
magnitude over that expected in the absence of mix
- …