105 research outputs found

    Mixed-Variable PSO with Fairness on Multi-Objective Field Data Replication in Wireless Networks

    Full text link
    Digital twins have shown a great potential in supporting the development of wireless networks. They are virtual representations of 5G/6G systems enabling the design of machine learning and optimization-based techniques. Field data replication is one of the critical aspects of building a simulation-based twin, where the objective is to calibrate the simulation to match field performance measurements. Since wireless networks involve a variety of key performance indicators (KPIs), the replication process becomes a multi-objective optimization problem in which the purpose is to minimize the error between the simulated and field data KPIs. Unlike previous works, we focus on designing a data-driven search method to calibrate the simulator and achieve accurate and reliable reproduction of field performance. This work proposes a search-based algorithm based on mixedvariable particle swarm optimization (PSO) to find the optimal simulation parameters. Furthermore, we extend this solution to account for potential conflicts between the KPIs using {\alpha}-fairness concept to adjust the importance attributed to each KPI during the search. Experiments on field data showcase the effectiveness of our approach to (i) improve the accuracy of the replication, (ii) enhance the fairness between the different KPIs, and (iii) guarantee faster convergence compared to other methods.Comment: Accepted in International Conference on Communications (ICC) 202

    FHEmem: A Processing In-Memory Accelerator for Fully Homomorphic Encryption

    Full text link
    Fully Homomorphic Encryption (FHE) is a technique that allows arbitrary computations to be performed on encrypted data without the need for decryption, making it ideal for securing many emerging applications. However, FHE computation is significantly slower than computation on plain data due to the increase in data size after encryption. Processing In-Memory (PIM) is a promising technology that can accelerate data-intensive workloads with extensive parallelism. However, FHE is challenging for PIM acceleration due to the long-bitwidth multiplications and complex data movements involved. We propose a PIM-based FHE accelerator, FHEmem, which exploits a novel processing in-memory architecture to achieve high-throughput and efficient acceleration for FHE. We propose an optimized end-to-end processing flow, from low-level hardware processing to high-level application mapping, that fully exploits the high throughput of FHEmem hardware. Our evaluation shows FHEmem achieves significant speedup and efficiency improvement over state-of-the-art FHE accelerators

    Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation

    No full text
    The issue of efficiency decrease according to temperature increase is a pending problem in the PV market. Several active and passive technologies have been suggested but few quantitative studies on the estimation of the cooling effect have been carried out. In this study, a CFD (computational fluid dynamics) simulation model was developed to analyze a passive cooling technology using fins attached to the back of the PV module. Furthermore, a method to improve airflow at the back of the PV module by forming slits in the frame was analyzed. The simulation model reproduced the indoor test that uses a solar simulator and the cooling performance was analyzed according to the shape of the fins and the presence of slits. In the simulation results, the surface temperature and expected electrical efficiency without cooling were 62.78 °C and 13.24% respectively under nominal operating cell temperature conditions. Moreover, the temperature reduced by approximately 15.13 °C because the fins attached at the bottom of the PV module increased the heat transfer area with airflow. Thus, the electrical efficiency according to the PV module temperature was predicted as 14.39%. Furthermore, when slits were installed between the fins, they increased the airflow velocity and accelerated the formation of turbulence, thereby improving the cooling performance of the fins. The simulation results showed that the temperature could be further reduced by approximately 8.62 °C at a lower air velocity. As the fins and slits can also reduce the non-uniformity of the temperature, they are expected to supplement the efficiency and durability reduction of the PV modules caused by the hot spot phenomenon. In addition, it was shown that slits in the frame could further improve the cooling performance of the fins at a low-velocity airflow

    Development of the Performance Prediction Equation for a Modular Ground Heat Exchanger

    No full text
    Although ground source heat pump (GSHP) systems are more efficient than conventional air source heat pump (ASHP) systems, their high initial investment cost makes it difficult to introduce them into small buildings. Therefore, the development of a method for reducing the installation costs of GSHPs for small buildings is essential. This study proposes a modular ground heat exchanger (GHX) for cost reduction and an improved workability of GSHPs. In addition, a numerical model was constructed for the analysis of the performance of the modular GHX. However, to easily introduce the new GHX at the building design stage, the development of a performance prediction method for the introduction of modular GHXs to small buildings is necessary. Therefore, the entering water temperature (EWT) equation was derived from the calculation methods in the heat transfer process, and the ground temperature model was developed in consideration of the operation condition. The numerical results showed that the average values of EWT and ground temperature were 8.11 °C and 8.00 °C, respectively under an average ambient temperature of 0.42 °C. In addition, the performance prediction model was compared with the numerical results. The results showed that the coefficient of variation of the root mean square error (RMSE) of the ground temperature and EWT model were 5.20% and 1.33%, respectively

    Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    No full text
    Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs

    Study on the Optimum Design Method of Heat Source Systems with Heat Storage Using a Genetic Algorithm

    No full text
    Recently, a heat source system utilizing a heat storage tank for energy savings in buildings was designed. A heat storage tank is an effective system for solving the qualitative and quantitative differences in the required building energy. On the other hand, the existing design process of a heat storage system is difficult to determine if the air-conditioning time is unclear, and the design in a real-working level is too inaccurate, causing oversizing and a high initial investment cost. This results in inefficient operation despite the introduction of an efficient system. Therefore, this study proposes an optimal design method of a heat source system using a thermal storage tank. To demonstrate the usefulness of the proposed design method, feasibility studies were conducted with the existing system designs. As a result, the optimal solution could reduce the initial cost by approximately 25.6% when following the conventional design process and it was approximately 40% lower than the real-working method. In conclusion, the conventional designs are inefficiently over-designed and the optimal design solution is superior. In this regard, the suggested optimal design method is efficient when designing a heat source system using a thermal storage tank

    A Numerical Study on System Performance of Groundwater Heat Pumps

    No full text
    Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs) are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data

    Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation

    No full text
    Recently, energy storage techniques using renewable energy efficiently have attracted considerable attention. However, there are several problems when using renewable energy. In the case of solar energy, the energy production time is different from the consumption time, and the use of geothermal energy has high investment costs. In order to solve these problems, it is essential to develop high-efficiency systems using both solar and geothermal energy simultaneously and efficiently. Thus, in this study, the performance of underground heat storage of solar energy was examined by simulation using models of underground heat transfer and heat exchange for the development of an integrated hybrid system exploiting both geothermal and solar energy. As a result, the heat extraction performance was determined to be up to 72.75 W/m. As a result, in Kagoshima, the most southern area in Korea, a case of six hour heat storage operation achieved the highest heat exchange rate of 72.75 W/m, which is approximately 105% higher than the case of operation without heat storage

    Development of Design Method for River Water Source Heat Pump System Using an Optimization Algorithm

    No full text
    River water source heat pump (RWSHP) systems are being proposed to reduce the energy consumption and carbon emissions of buildings. The RWSHP system is actively applied to large-scale buildings due to its stable performance. The application of RWSHP in large-scale facilities requires an accurate capacity design with considerations of building load, heat source, and environment conditions. However, most RWSHP systems are over-designed based on peak load of buildings. These design methods, based on peak loads, are economically and environmentally disadvantageous. Therefore, this paper aims to development an optimal design method, both economically and environmentally, for the RWSHP system. To develop this optimal design method, a simulation model was created with an optimization algorithm. The economics of the RWSHP system were calculated bases on present worth of annuity factor. Moreover, CO2 emissions were estimated using the life cycle climate performance proposed by the International Institute of Refrigeration. The total cost of the proposed RWSHP system that apply the optimum design method decreased by 24% compared to conventional RWSHP systems. Moreover, CO2 emissions of the proposed RWSHP system reduced by 4% compared to conventional RWSHP systems
    • …
    corecore