445 research outputs found

    The Entropy Function for the Black Holes of Nariai Class

    Full text link
    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the `Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as {\em minus} `Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes.Comment: references added, compatible with the published versio

    Noncommutativity, generalized uncertainty principle and FRW cosmology

    Full text link
    We consider the effects of noncommutativity and the generalized uncertainty principle on the FRW cosmology with a scalar field. We show that, the cosmological constant problem and removability of initial curvature singularity find natural solutions in this scenarios.Comment: 8 pages, to appear in IJT

    Ricci-flat deformation of orbifolds and localized tachyonic modes

    Full text link
    We study Ricci-flat deformations of orbifolds in type II theory. We obtain a simple formula for mass corrections to the twisted modes due to the deformations, and apply it to originally tachyonic and massless states in several examples. In the case of supersymmetric orbifolds, we find that tachyonic states appear when the deformation breaks all the supersymmetries. We also study nonsupersymmetric orbifolds C^2/Z_{2N(2N+1)}, which is T-dual to N type 0 NS5-branes. For N>=2, we compute mass corrections for states, which have string scale tachyonic masses. We find that the corrected masses coincide to ones obtained by solving the wave equation for the tachyon field in the smeared type 0 NS5-brane background geometry. For N=1, we show that the unstable mode representing the bubble creation is the unique tachyonic mode.Comment: 20 pages, minor collection

    Development of KAISTSAT-4 Expanding the Role of Small Satellite for Scientific Research

    Get PDF
    The fourth Korean small satellite, KAISTSAT-4, is under development by Satellite Technology Research Center (SaTReC) of the Korea Advanced Institute of Science and Technology (KAIST). The KAISTSAT-4 program was commenced on October 1998 with multiple mission objectives, which include exploring space science, deploying satellite-based data collection system and development of precision star sensor. Despite severe constraints on mass and size, these advanced science and engineering payloads are expected to deliver various useful results and exhibit the unique role of small satellite. We present an overview of the KAISTSAT-4 mission and describe its current status. Finally the prospect of future small satellite programs is briefly introduced

    Effective Finite Temperature Partition Function for Fields on Non-Commutative Flat Manifolds

    Get PDF
    The first quantum correction to the finite temperature partition function for a self-interacting massless scalar field on a DD-dimensional flat manifold with pp non-commutative extra dimensions is evaluated by means of dimensional regularization, suplemented with zeta-function techniques. It is found that the zeta function associated with the effective one-loop operator may be nonregular at the origin. The important issue of the determination of the regularized vacuum energy, namely the first quantum correction to the energy in such case is discussed.Comment: amslatex, 14 pages, to appear in Phys. Rev.

    Phenomenology of Particle Production and Propagation in String-Motivated Canonical Noncommutative Spacetime

    Full text link
    We outline a phenomenological programme for the search of effects induced by (string-motivated) canonical noncommutative spacetime. The tests we propose are based, in analogy with a corresponding programme developed over the last few years for the study of Lie-algebra noncommutative spacetimes, on the role of the noncommutativity parameters in the E(p)E(p) dispersion relation. We focus on the role of deformed dispersion relations in particle-production collision processes, where the noncommutativity parameters would affect the threshold equation, and in the dispersion of gamma rays observed from distant astrophysical sources. We emphasize that the studies here proposed have the advantage of involving particles of relatively high energies, and may therefore be less sensitive to "contamination" (through IR/UV mixing) from the UV sector of the theory. We also explore the possibility that the relevant deformation of the dispersion relations could be responsible for the experimentally-observed violations of the GZK cutoff for cosmic rays and could have a role in the observation of hard photons from distant astrophysical sources.Comment: With respect to the experimental information available at the time of writing version 1 of this manuscript (hep-th/0109191v1) the situation has evolved significantly. Our remarks on the benefits of high-energy observations found additional encouragement from the results reported in hep-th/020925

    Open Strings in Exactly Solvable Model of Curved Spacetime and PP-Wave Limit

    Full text link
    In this paper we study the superstring version of the exactly solvable string model constructed by Russo and Tseytlin. This model represents superstring theory in a curved spacetime and can be seen as a generalization of the Melvin background. We investigate D-branes in this model as probes of the background geometry by constructing the boundary states. We find that spacetime singularities in the model become smooth at high energy from the viewpoint of open string. We show that there always exist bulk (movable) D-branes by the effect of electric flux. The model also includes Nappi-Witten model as the Penrose limit and supersymmetry is enhanced in the limit. We examine this phenomenon in the open string spectrum. We also find the similar enhancement of supersymmetry can be occurred in several coset models.Comment: Latex, 32 pages, typos corrected, references added, to appear in JHEP, eq.(2.22) correcte

    Transversely-intersecting D-branes at finite temperature and chiral phase transition

    Full text link
    We consider Sakai-Sugimoto like models consisting of Dq-Dp-anti-Dp-branes where flavor Dp and anti-Dp-branes transversely intersect color Dq-branes along two (r+1)-dimensional subspaces. For some values of p and q, the theory of intersections dynamically breaks non-Abelian chiral symmetry which is holographically realized as a smooth connection of the flavor branes at some point in the bulk of the geometry created by Dq-branes. We analyze the system at finite temperature and map out different phases of the theory representing chiral symmetry breaking and restoration. For q<5 we find that, unlike the zero-temperature case, there exist two branches of smoothly-connected solutions for the flavor branes, one getting very close to the horizon of the background and the other staying farther away from it. At low temperatures, the solution which stays farther away from the horizon determines the vacuum. For background D5 and D6-branes we find that the flavor branes, like the zero temperature case, show subtle behavior whose dual gauge theory interpretation is not clear. We conclude with some comments on how chiral phase transition in these models can be seen from their open string tachyon dynamics.Comment: 35 pages, 7 figures, minor changes, published versio

    Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State

    Full text link
    Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II detector we have observed a narrow resonance in the Ds*+pi0 final state, with a mass near 2.46 GeV. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new state, designated as the DsJ(2463)+. Because of the similar dM values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences = 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and = 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+ state. We have also searched, but find no evidence, for decays of the two states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels respectively, are consistent with their interpretations as (c anti-strange) mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical Review D; minor modifications and fixes to typographical errors, plus an added section on production properties. The main results are unchanged; they supersede those reported in hep-ex/030501

    Measurement of the Charge Asymmetry in BK(892)±πB\to K^* (892)^{\pm}\pi^{\mp}

    Full text link
    We report on a search for a CP-violating asymmetry in the charmless hadronic decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B -> K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR
    corecore