3 research outputs found

    Stability of High Band Gap P3HT: PCBM Organic Solar Cells Using TiOx Interfacial Layer

    Get PDF
    We fabricated a poly [3-hexylthiophene] (P3HT) and [6,6] -phenyl-C61-butyric acid methyl ester (PC61BM with the TiOx layer. We found that a solution based TiOx coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOx layer was also used as the interfacial layer to investigate the stability of P3HT: PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC) dropped by 16.2%, fill factor (FF) dropped by 10.6%, and power conversion efficiency (PCE) dropped approximately by 25%, while the open-circuit voltage (VOC) remained relatively stable. We found that a solution based TiOx layer synthesized using a sol-gel chemistry method was very effective in protecting the active layer from degradation

    Stability of High Band Gap P3HT : PCBM Organic Solar Cells Using TiOx Interfacial Layer

    No full text
    We fabricated a poly[3-hexylthiophene] (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) organic photovoltaic cells (OPCs) using TiOx interfacial layer. We performed optimization processes for P3HT : PC61BM with the TiOx layer. We found that a solution based TiOx layer coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOx layer was also used as the interfacial layer to investigate the stability of P3HT : PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC) dropped by 16.2%, fill factor (FF) dropped by 10.6%, and power conversion efficiency (PCE) dropped approximately by 25%, while the open-circuit voltage (VOC) remained relatively stable. We found that a solution based TiOx layer synthesized using a sol-gel chemistry method was very effective in protecting the active layer from degradation
    corecore