16,202 research outputs found

    Fate of global symmetries in the Universe: QCD axion, quintessential axion and trans-Planckian inflaton decay-constant

    Full text link
    Pseudoscalars appearing in particle physics are reviewd systematically. From the fundamental point of view at an ultra-violat completed theory, they can be light if they are realized as pseudo-Goldstone bosons of some spontaneously broken global symmetries. The spontaneous breaking scale is parametrized by the decay constant ff. The global symmetry is defined by the lowest order terms allowed in the effective theory consistent with the gauge symmetry in question. Since any global symmetry is known to be broken at least by quantum gravitational effects, all pseudoscalars should be massive. The mass scale is determined by ff and the explicit breaking terms ΔV\Delta V in the effective potential and also anomaly terms ΔΛG4\Delta\Lambda^4_G for some non-Abelian gauge groups GG. The well-known example by non-Abelian gauge group breaking is the potential for the "invisible" QCD axion, via the Peccei-Quinn symmetry, which constitutes a major part of this review. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms ΔV\Delta V in the potential in which case the leading term suppressed by ff determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a `quintessential axion'. In general, (ΔV)1/4(\Delta V)^{1/4} is considered to be smaller than ff, and hence the pseudo-Goldstone boson mass scales are considered to be smaller than the decay constants. In such a case, the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model, which is known as `natural inflation'. We review all these ideas in the bosonic collective motion framework.Comment: 41 pages with 27 figure

    Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling

    Get PDF
    We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical learning algorithm, based on projected subgradients and Douglas-Rachford splitting technique, and demonstrate its ability to robustly recover a ground truth analysis operator, when provided with a clean training set, of sufficient size. We also find an analysis operator for images, using some noisy cosparse signals, which is indeed a more realistic experiment. As the derived optimisation problem is not a convex program, we often find a local minimum using such variational methods. Some local optimality conditions are derived for two different settings, providing preliminary theoretical support for the well-posedness of the learning problem under appropriate conditions.Comment: 29 pages, 13 figures, accepted to be published in TS

    Rescaling Ward identities in the random normal matrix model

    Full text link
    We study existence and universality of scaling limits for the eigenvalues of a random normal matrix, in particular at points on the boundary of the spectrum. Our approach uses Ward's equation, which is an identity satisfied by the 1-point function.Comment: This is a substantial revision with several new results. The previous section 7 on singular boundary points has been lifted out and developed in a separate not

    Molecular Dynamics Simulation of Ga Penetration along Grain Boundaries in Al: a Dislocation Climb Mechanism

    Full text link
    Many systems where a liquid metal is in contact with a polycrystalline solid exhibit deep liquid grooves where the grain boundary meets the solid-liquid interface. For example, liquid Ga quickly penetrates deep into grain boundaries in Al, leading to intergranular fracture under very small stresses. We report on a series of molecular dynamics simulations of liquid Ga in contact with an Al bicrystal. We identify the mechanism for liquid metal embrittlement, develop a new model for it, and show that is in excellent agreement with both simulation and experimental data

    Hairs of discrete symmetries and gravity

    Get PDF
    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.Comment: 9 pages,9 figure

    Evidence for the two pole structure of the Lambda(1405) resonance

    Full text link
    The K^- p --> pi^0 pi^0 Sigma^0 reaction is studied within a chiral unitary model. The distribution of pi^0 Sigma^0 states forming the Lambda(1405) shows, in agreement with a recent experiment, a peak at 1420 MeV and a relatively narrow width of Gamma = 38 MeV. The mechanism for the reaction is largely dominated by the emission of a pi^0 prior to the K^- p interaction leading to the Lambda(1405). This ensures the coupling of the Lambda(1405) to the K^- p channel, thus maximizing the contribution of the second state found in chiral unitary theories, which is narrow and of higher energy than the nominal Lambda(1405). This is unlike the pi^- p --> K^0 \pi Sigma reaction, which gives more weight to the pole at lower energy and with a larger width. The data of these two experiments, together with the present theoretical analysis, provides a firm evidence of the two pole structure of the Lambda(1405).Comment: 4 pages, 6 figure
    • …
    corecore